dc.creatorCortazar, Carmen
dc.creatorElgueta, Manuel
dc.creatorRossi, Julio D.
dc.date.accessioned2024-01-10T13:43:45Z
dc.date.accessioned2024-05-02T19:18:20Z
dc.date.available2024-01-10T13:43:45Z
dc.date.available2024-05-02T19:18:20Z
dc.date.created2024-01-10T13:43:45Z
dc.date.issued2007
dc.identifier10.1016/j.jmaa.2007.01.079
dc.identifier0022-247X
dc.identifierhttps://doi.org/10.1016/j.jmaa.2007.01.079
dc.identifierhttps://repositorio.uc.cl/handle/11534/78744
dc.identifierWOS:000248445800032
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9272413
dc.description.abstractLet Omega be a bounded smooth domain in R-N. We consider the problem u(t) = Delta u + V(x)u(P) in Omega x [0, T), with Dirichlet boundary conditions u = 0 on partial derivative Omega x [0, T) and initial datum u (x, 0) = M phi (x) where M >= 0, phi is positive and compatible with the boundary condition. We give estimates for the blow-up time of solutions for large values of M. As a consequence of these estimates we find that, for M large, the blow-up set concentrates near the points where phi(P-1) V attains its maximum. (c) 2007 Elsevier Inc. All rights reserved.
dc.languageen
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsacceso restringido
dc.subjectblow-up
dc.subjectsemilinear parabolic equations
dc.subjectHEAT-EQUATIONS
dc.subjectDIFFUSION
dc.titleThe blow-up problem for a semilinear parabolic equation with a potential
dc.typeartículo


Este ítem pertenece a la siguiente institución