dc.creator | Cortazar, Carmen | |
dc.creator | Elgueta, Manuel | |
dc.creator | Rossi, Julio D. | |
dc.date.accessioned | 2024-01-10T13:43:45Z | |
dc.date.accessioned | 2024-05-02T19:18:20Z | |
dc.date.available | 2024-01-10T13:43:45Z | |
dc.date.available | 2024-05-02T19:18:20Z | |
dc.date.created | 2024-01-10T13:43:45Z | |
dc.date.issued | 2007 | |
dc.identifier | 10.1016/j.jmaa.2007.01.079 | |
dc.identifier | 0022-247X | |
dc.identifier | https://doi.org/10.1016/j.jmaa.2007.01.079 | |
dc.identifier | https://repositorio.uc.cl/handle/11534/78744 | |
dc.identifier | WOS:000248445800032 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9272413 | |
dc.description.abstract | Let Omega be a bounded smooth domain in R-N. We consider the problem u(t) = Delta u + V(x)u(P) in Omega x [0, T), with Dirichlet boundary conditions u = 0 on partial derivative Omega x [0, T) and initial datum u (x, 0) = M phi (x) where M >= 0, phi is positive and compatible with the boundary condition. We give estimates for the blow-up time of solutions for large values of M. As a consequence of these estimates we find that, for M large, the blow-up set concentrates near the points where phi(P-1) V attains its maximum. (c) 2007 Elsevier Inc. All rights reserved. | |
dc.language | en | |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.rights | acceso restringido | |
dc.subject | blow-up | |
dc.subject | semilinear parabolic equations | |
dc.subject | HEAT-EQUATIONS | |
dc.subject | DIFFUSION | |
dc.title | The blow-up problem for a semilinear parabolic equation with a potential | |
dc.type | artículo | |