dc.creatorRivas, Luisa
dc.creatorGalea Rojas, Manuel Jesús
dc.date.accessioned2024-04-16T20:29:29Z
dc.date.accessioned2024-05-02T19:08:55Z
dc.date.available2024-04-16T20:29:29Z
dc.date.available2024-05-02T19:08:55Z
dc.date.created2024-04-16T20:29:29Z
dc.date.issued2021
dc.identifier10.1080/03610926.2021.1942493
dc.identifier1532-415X
dc.identifier0361-0926
dc.identifierhttps://doi.org/10.1080/03610926.2021.1942493
dc.identifierhttps://repositorio.uc.cl/handle/11534/85145
dc.identifierWOS:000670119800001
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9272138
dc.description.abstractIn this paper the influence measures for the Negative Binomial regression model are presented. Based on the conditional expectation of the complete-data log-likelihood function we derive some influence measures, such as case deletion (global influence) and local influence analysis. For the implementation of the influence measures we present explicit expressions and discuss an appropriate perturbation scheme. To illustrate the results, simulations and real data applications are presented. Results show that both global and local influence methods are effective in detecting possible observations that influence the parameter estimation, or at least in focusing researchers attention on those observations.
dc.languageen
dc.publisherTAYLOR & FRANCIS INC
dc.rightsacceso restringido
dc.subjectEM algorithm
dc.subjectPoisson-Gamma mixture
dc.subjectgeneralized Cook's distance
dc.subjectappropriate perturbation
dc.subjectglobal and local influence
dc.subjectMixed Poisson
dc.subjectMaximum-Likelihood
dc.subjectLocal Influence
dc.subjectIncomplete-Data
dc.titleOn estimation and influence measures for the Negative Binomial regression model based on Q-function
dc.typeartículo de revisión


Este ítem pertenece a la siguiente institución