dc.creatorOchsenius, H.
dc.creatorSchikhof, W. H.
dc.date.accessioned2024-01-10T12:06:32Z
dc.date.available2024-01-10T12:06:32Z
dc.date.created2024-01-10T12:06:32Z
dc.date.issued2007
dc.identifier10.36045/bbms/1179839213
dc.identifier1370-1444
dc.identifierhttps://doi.org/10.36045/bbms/1179839213
dc.identifierhttps://repositorio.uc.cl/handle/11534/76174
dc.identifierWOS:000248792900001
dc.description.abstractLet K be a complete infinite rank valued field and E a K-Banach space with a countable orthogonal base. In [9] and [10] we have studied bounded (called Lipschitz) operators on E and introduced the notion of a strictly Lipschitz operator. Here we characterize them, as well as compact and nuclear operators, in terms of their (infinite) matrices. This results provide new insights and also useful criteria for constructing operators with given properties.
dc.languageen
dc.publisherBELGIAN MATHEMATICAL SOC TRIOMPHE
dc.rightsacceso abierto
dc.subjectLipschitz operators
dc.subjectHilbert spaces
dc.subjectKrull valued fields
dc.subjectHILBERT-SPACES
dc.titleMatrix characterizations of Lipschitz operators on Banach spaces over Krull valued fields
dc.typeartículo


Este ítem pertenece a la siguiente institución