dc.creatorDuran, M
dc.creatorMuga, I
dc.creatorNedelec, JC
dc.date.accessioned2024-01-10T14:22:00Z
dc.date.accessioned2024-05-02T19:07:30Z
dc.date.available2024-01-10T14:22:00Z
dc.date.available2024-05-02T19:07:30Z
dc.date.created2024-01-10T14:22:00Z
dc.date.issued2005
dc.identifier10.1016/j.crma.2005.09.021
dc.identifier1631-073X
dc.identifierhttps://doi.org/10.1016/j.crma.2005.09.021
dc.identifierhttps://repositorio.uc.cl/handle/11534/79838
dc.identifierWOS:000233079000007
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9272074
dc.description.abstractIn this Note we obtain existence and uniqueness results for the Helmholtz equation in the half-space R-+(3) with an impedance or Robin boundary condition. Basically, we follow the procedure we have already used in the bi-dimensional case (the half-plane). Thus, we compute the associated Green's function with the help of a double Fourier transform and we analyze its far field in order to obtain radiation conditions that allow us to prove the uniqueness of an outgoing solution. Again, these radiation conditions are somewhat unusual due to the appearance of a surface wave guided by the boundary. An integral representation of the solution is presented by means of the Green's function and the boundary data.
dc.languageen
dc.publisherELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
dc.rightsacceso restringido
dc.subjectINVERSE SCATTERING
dc.titleThe Helmholtz equation with impedance in a half-space
dc.typeartículo


Este ítem pertenece a la siguiente institución