dc.creatorPerez Arancibia, Carlos
dc.creatorDuran, Mario
dc.date.accessioned2024-01-10T13:15:54Z
dc.date.accessioned2024-05-02T19:00:04Z
dc.date.available2024-01-10T13:15:54Z
dc.date.available2024-05-02T19:00:04Z
dc.date.created2024-01-10T13:15:54Z
dc.date.issued2010
dc.identifier10.1016/j.cam.2010.05.053
dc.identifier1879-1778
dc.identifier0377-0427
dc.identifierhttps://doi.org/10.1016/j.cam.2010.05.053
dc.identifierhttps://repositorio.uc.cl/handle/11534/78541
dc.identifierWOS:000282549600020
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9271754
dc.description.abstractThis paper addresses the problem of finding a series representation for the Green's function of the Helmholtz operator in an infinite circular cylindrical waveguide with impedance boundary condition. Resorting to the Fourier transform, complex analysis techniques and the limiting absorption principle (when the undamped case is analyzed), a detailed deduction of the Green's function is performed, generalizing the results available in the literature for the case of a complex impedance parameter. Procedures to obtain numerical values of the Green's function are also developed in this article. (C) 2010 Elsevier B.V. All rights reserved.
dc.languageen
dc.publisherELSEVIER
dc.rightsacceso restringido
dc.subjectGreen's function
dc.subjectHelmholtz equation
dc.subjectImpedance boundary condition
dc.subjectCylindrical waveguide
dc.subjectBESSEL-FUNCTIONS
dc.subjectHALF-PLANE
dc.subjectZEROS
dc.subjectPROPAGATION
dc.subjectROOTS
dc.titleOn the Green's function for the Helmholtz operator in an impedance circular cylindrical waveguide
dc.typeartículo


Este ítem pertenece a la siguiente institución