dc.creatorComets, Francis
dc.creatorQuastel, Jeremy
dc.creatorRamirez, Alejandro F.
dc.date.accessioned2024-01-10T12:05:32Z
dc.date.accessioned2024-05-02T18:47:45Z
dc.date.available2024-01-10T12:05:32Z
dc.date.available2024-05-02T18:47:45Z
dc.date.created2024-01-10T12:05:32Z
dc.date.issued2007
dc.identifier10.1016/j.anihpb.2006.01.005
dc.identifier0246-0203
dc.identifierhttps://doi.org/10.1016/j.anihpb.2006.01.005
dc.identifierhttps://repositorio.uc.cl/handle/11534/76025
dc.identifierWOS:000245178300002
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9271173
dc.description.abstractWe consider an interacting particle system on the one-dimensional lattice Z modeling combustion. The process depends on two integer parameters 2 <= a <= M <= infinity. Particles move independently as continuous time simple symmetric random walks except that (i) when a particle jumps to a site which has not been previously visited by any particle, it branches into a particles, (ii) when a particle jumps to a site with M particles, it is annihilated. We start from a configuration where all sites to the left of the origin have been previously visited and study the law of large numbers and central limit theorem for r(t), the rightmost visited site at time t. The proofs are based on the construction of a renewal structure leading to a definition of. regeneration times for which good tail estimates can be performed. (c) 2006 Elsevier Masson SAS. All rights reserved.
dc.languageen
dc.publisherGAUTHIER-VILLARS/EDITIONS ELSEVIER
dc.rightsacceso restringido
dc.subjectregeneration times
dc.subjectinteracting particle systems
dc.subjectrandom walks in random environment
dc.subjectRANDOM-WALKS
dc.subjectASYMPTOTIC-BEHAVIOR
dc.subjectRANDOM ENVIRONMENT
dc.subjectGROWTH-PROCESS
dc.subjectLARGE NUMBERS
dc.subjectSYSTEM
dc.subjectLAW
dc.titleFluctuations of the front in a stochastic combustion model
dc.typeartículo


Este ítem pertenece a la siguiente institución