dc.creator | Cortazar, C. | |
dc.creator | Coville, J. | |
dc.creator | Elgueta, M. | |
dc.creator | Martinez, S. | |
dc.date.accessioned | 2024-01-10T12:04:14Z | |
dc.date.accessioned | 2024-05-02T18:44:55Z | |
dc.date.available | 2024-01-10T12:04:14Z | |
dc.date.available | 2024-05-02T18:44:55Z | |
dc.date.created | 2024-01-10T12:04:14Z | |
dc.date.issued | 2007 | |
dc.identifier | 10.1016/j.jde.2007.06.002 | |
dc.identifier | 1090-2732 | |
dc.identifier | 0022-0396 | |
dc.identifier | https://doi.org/10.1016/j.jde.2007.06.002 | |
dc.identifier | https://repositorio.uc.cl/handle/11534/75735 | |
dc.identifier | WOS:000250674400007 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9271045 | |
dc.description.abstract | This article in devoted to the study of the nonlocal dispersal equation | |
dc.description.abstract | u(t)(x, t) = R integral J(x - y/g(y))u(y, t)/g(y) dy-u(x, t) in R x [0, infinity), | |
dc.description.abstract | and its stationary counterpart. We prove global existence for the initial value problem, and under suitable hypothesis on g and J, we prove that positive bounded stationary solutions exist. We also analyze the asymptotic behavior of the finite mass solutions as t -> infinity, showing that they converge locally to zero. (C) 2007 Elsevier Inc. All rights reserved. | |
dc.language | en | |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.rights | acceso restringido | |
dc.subject | integral equation | |
dc.subject | nonlocal dispersal | |
dc.subject | inhomogeneous dispersal | |
dc.subject | TRAVELING-WAVES | |
dc.subject | DIFFUSION | |
dc.subject | EQUATIONS | |
dc.title | A nonlocal inhomogeneous dispersal process | |
dc.type | artículo | |