dc.creatorCortazar, C.
dc.creatorCoville, J.
dc.creatorElgueta, M.
dc.creatorMartinez, S.
dc.date.accessioned2024-01-10T12:04:14Z
dc.date.accessioned2024-05-02T18:44:55Z
dc.date.available2024-01-10T12:04:14Z
dc.date.available2024-05-02T18:44:55Z
dc.date.created2024-01-10T12:04:14Z
dc.date.issued2007
dc.identifier10.1016/j.jde.2007.06.002
dc.identifier1090-2732
dc.identifier0022-0396
dc.identifierhttps://doi.org/10.1016/j.jde.2007.06.002
dc.identifierhttps://repositorio.uc.cl/handle/11534/75735
dc.identifierWOS:000250674400007
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9271045
dc.description.abstractThis article in devoted to the study of the nonlocal dispersal equation
dc.description.abstractu(t)(x, t) = R integral J(x - y/g(y))u(y, t)/g(y) dy-u(x, t) in R x [0, infinity),
dc.description.abstractand its stationary counterpart. We prove global existence for the initial value problem, and under suitable hypothesis on g and J, we prove that positive bounded stationary solutions exist. We also analyze the asymptotic behavior of the finite mass solutions as t -> infinity, showing that they converge locally to zero. (C) 2007 Elsevier Inc. All rights reserved.
dc.languageen
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsacceso restringido
dc.subjectintegral equation
dc.subjectnonlocal dispersal
dc.subjectinhomogeneous dispersal
dc.subjectTRAVELING-WAVES
dc.subjectDIFFUSION
dc.subjectEQUATIONS
dc.titleA nonlocal inhomogeneous dispersal process
dc.typeartículo


Este ítem pertenece a la siguiente institución