dc.creatorvon Meien, OF
dc.creatorLuz, LFL
dc.creatorMitchell, DA
dc.creatorPerez Correa, JR
dc.creatorAgosin, E
dc.creatorFernandez Fernandez, M
dc.creatorArcas, JA
dc.date.accessioned2024-01-10T13:12:02Z
dc.date.accessioned2024-05-02T18:33:45Z
dc.date.available2024-01-10T13:12:02Z
dc.date.available2024-05-02T18:33:45Z
dc.date.created2024-01-10T13:12:02Z
dc.date.issued2004
dc.identifier10.1016/j.ces.2004.06.027
dc.identifier1873-4405
dc.identifier0009-2509
dc.identifierhttps://doi.org/10.1016/j.ces.2004.06.027
dc.identifierhttps://repositorio.uc.cl/handle/11534/78131
dc.identifierWOS:000224292700010
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9270622
dc.description.abstractThis paper tests different control strategies based on classic proportional integral derivative (PID) and advanced dynamic matrix control (DMC) algorithms for an intermittently stirred, forcefully aerated solid-state fermentation bioreactor. The study was done using a distributed parameter model to reproduce the main operating features of this type of bioreactor. There is predicted to be a remarkable improvement in the bioreactor productivity when control strategies are implemented. For this type of bioreactor, the temperature and water content of the substrate bed can be controlled by saturating the air at the air inlet but manipulating its temperature, coupled with a strategy of water replenishment when the water content of the bed falls below a threshold. Dynamic matrix control is superior to PID control; however, a specific convolution matrix for different stages of the fermentation is necessary due to the changing behavior of the system. This work shows the benefit of mathematical modeling, since the many different operating conditions investigated via simulations would not have been economically feasible to undertake experimentally with a large-scale bioreactor. The results obtained provide an excellent starting point for such large-scale experimental work. (C) 2004 Elsevier Ltd. All rights reserved.
dc.languageen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.rightsacceso restringido
dc.subjectbiochemical engineering
dc.subjectbioreactors
dc.subjectcontrol
dc.subjectfermentation
dc.subjectmathematical modeling
dc.subjectpacked-bed
dc.subjectSSF
dc.subjectPILOT-SCALE REACTOR
dc.subjectSUGAR-BEET PULP
dc.subjectSUBSTRATE FERMENTATION
dc.subjectTRANSPORT RESISTANCES
dc.subjectBIOCHEMICAL REACTION
dc.subjectHEAT-TRANSFER
dc.subjectCULTIVATION
dc.subjectTEMPERATURE
dc.subjectGRADIENTS
dc.subjectPROTEIN
dc.titleControl strategies for intermittently mixed, forcefully aerated solid-state fermentation bioreactors based on the analysis of a distributed parameter model
dc.typeartículo


Este ítem pertenece a la siguiente institución