dc.creatorTiedra De Aldecoa, Rafael
dc.date.accessioned2024-01-10T14:21:43Z
dc.date.available2024-01-10T14:21:43Z
dc.date.created2024-01-10T14:21:43Z
dc.date.issued2012
dc.identifier10.3934/jmd.2012.6.275
dc.identifier1930-532X
dc.identifier1930-5311
dc.identifierhttps://doi.org/10.3934/jmd.2012.6.275
dc.identifierhttps://repositorio.uc.cl/handle/11534/79759
dc.identifierWOS:000307877000005
dc.description.abstractWe prove (under the condition of A. G. Kushnirenko) that all time changes of the horocycle flow have purely absolutely continuous spectrum in the orthocomplement of the constant functions. This provides an answer to a question of A. Katok and J.-P. Thouvenot on the spectral nature of time changes of horocycle flows. Our proofs rely on positive commutator methods for self-adjoint operators.
dc.languageen
dc.publisherAMER INST MATHEMATICAL SCIENCES-AIMS
dc.rightsacceso restringido
dc.subjectHorocycle flow
dc.subjecttime change
dc.subjectspectral analysis
dc.subjectcommutator methods
dc.titleSPECTRAL ANALYSIS OF TIME CHANGES OF HOROCYCLE FLOWS
dc.typeartículo


Este ítem pertenece a la siguiente institución