dc.creatorAo, Weiwei
dc.creatorMusso, Monica
dc.creatorWei, Juncheng
dc.date.accessioned2024-01-10T14:22:19Z
dc.date.available2024-01-10T14:22:19Z
dc.date.created2024-01-10T14:22:19Z
dc.date.issued2011
dc.identifier10.1137/100812100
dc.identifier1095-7154
dc.identifier0036-1410
dc.identifierhttps://doi.org/10.1137/100812100
dc.identifierhttps://repositorio.uc.cl/handle/11534/79908
dc.identifierWOS:000298371400003
dc.description.abstractWe consider the singularly perturbed Neumann problem epsilon(2)Delta u - u + up = 0, u > 0 in Omega, partial derivative u/partial derivative v = 0 on partial derivative Omega, where p > 1 and Omega is a smooth and bounded domain in R-2. We construct a class of solutions which consist of large number of spikes concentrated on three line segments with a common endpoint which intersect partial derivative Omega orthogonally.
dc.languageen
dc.publisherSIAM PUBLICATIONS
dc.rightsacceso restringido
dc.subjecttriple junctions
dc.subjectsingularly perturbed problems
dc.subjectfinite-dimensional reduction
dc.subjectBOUNDARY PEAK SOLUTIONS
dc.subjectCAHN-HILLIARD EQUATION
dc.subjectLEAST-ENERGY SOLUTIONS
dc.subjectSPIKE-LAYER SOLUTIONS
dc.subjectSTATIONARY SOLUTIONS
dc.subjectMULTIPEAK SOLUTIONS
dc.subjectELLIPTIC-EQUATIONS
dc.subjectLOCAL MINIMIZERS
dc.subjectINTERIOR
dc.subjectSYSTEM
dc.titleTRIPLE JUNCTION SOLUTIONS FOR A SINGULARLY PERTURBED NEUMANN PROBLEM
dc.typeartículo


Este ítem pertenece a la siguiente institución