dc.creatorElal Olivero, David
dc.creatorGomez, Hector W.
dc.creatorQuintana, Fernando A.
dc.date.accessioned2024-01-10T12:37:46Z
dc.date.accessioned2024-05-02T18:07:43Z
dc.date.available2024-01-10T12:37:46Z
dc.date.available2024-05-02T18:07:43Z
dc.date.created2024-01-10T12:37:46Z
dc.date.issued2009
dc.identifier10.1016/j.jspi.2008.07.016
dc.identifier1873-1171
dc.identifier0378-3758
dc.identifierhttps://doi.org/10.1016/j.jspi.2008.07.016
dc.identifierhttps://repositorio.uc.cl/handle/11534/76921
dc.identifierWOS:000262760800018
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9269870
dc.description.abstractWe consider Bayesian inference using an extension of the family of skew-elliptical distributions studied by Azzalini [1985. A class of distributions which includes the normal ones. Scand. J. Statist. Theory and Applications 12 (2), 171-178]. This new class is referred to as bimodal skew-elliptical (BSE) distributions. The elements of the BSE class can take quite different forms. In particular, they can adopt both uni- and bimodal shapes. The bimodal case behaves similarly to mixtures of two symmetric distributions and we compare inference under the BSE family with the specific case of mixtures of two normal distributions. We study the main properties of the general class and illustrate its applications to two problems involving density estimation and linear regression. (C) 2008 Elsevier B.V. All rights reserved.
dc.languageen
dc.publisherELSEVIER SCIENCE BV
dc.rightsacceso restringido
dc.subjectBimodality
dc.subjectDensity estimation
dc.subjectLinear regression
dc.subjectSkew-normal distribution
dc.subjectStochastic representation
dc.subjectSYMMETRIC DISTRIBUTIONS
dc.subjectREPRESENTATION
dc.subjectINFERENCE
dc.titleBayesian modeling using a class of bimodal skew-elliptical distributions
dc.typeartículo


Este ítem pertenece a la siguiente institución