dc.creatorPalma, W
dc.creatorChan, NH
dc.date.accessioned2024-01-10T13:12:49Z
dc.date.accessioned2024-05-02T18:00:04Z
dc.date.available2024-01-10T13:12:49Z
dc.date.available2024-05-02T18:00:04Z
dc.date.created2024-01-10T13:12:49Z
dc.date.issued1997
dc.identifier10.1002/(SICI)1099-131X(199711)16:6<395
dc.identifier0277-6693
dc.identifierhttps://doi.org/10.1002/(SICI)1099-131X(199711)16:6<395
dc.identifierhttps://repositorio.uc.cl/handle/11534/78234
dc.identifierWOS:A1997YE88100001
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9269553
dc.description.abstractThis paper addresses the issues of maximum likelihood estimation and forecasting of a long-memory time series with missing values. A state-space representation of the underlying long-memory process is proposed. By incorporating this representation with the Kalman filter, the proposed method allows not only fbr an efficient estimation of an ARFIMA model but also for the estimation of future values under the presence of missing data. This procedure is illustrated through an analysis of a foreign exchange data set. An investment scheme is developed which demonstrates the usefulness of the proposed approach. (C) 1997 John Wiley & Sons, Ltd.
dc.languageen
dc.publisherJOHN WILEY & SONS LTD
dc.rightsacceso restringido
dc.subjectlong memory
dc.subjectARFIMA models
dc.subjectforecasting
dc.subjectmaximum likelihood estimation
dc.subjectmissing values
dc.subjectforeign exchange data
dc.subjectTIME-SERIES
dc.subjectMODELS
dc.titleEstimation and forecasting of long-memory processes with missing values
dc.typeartículo


Este ítem pertenece a la siguiente institución