dc.creatorCharao, Ruy C.
dc.creatorAstaburuaga, Maria A.
dc.creatorFernandez, Claudio
dc.date.accessioned2024-01-10T13:43:38Z
dc.date.available2024-01-10T13:43:38Z
dc.date.created2024-01-10T13:43:38Z
dc.date.issued2009
dc.identifier1572-9206
dc.identifier1521-1398
dc.identifierhttps://repositorio.uc.cl/handle/11534/78707
dc.identifierWOS:000264568100007
dc.description.abstractWe show that the solutions of the wave equation with potential, Neumann boundary conditions and a locally distributed nonlinear damping, decay to zero, with an algebraic rate, that is, the total energy E(t) satisfies for t >= 0: E(t) <= C(1 + t)(-gamma), where C is a positive constant depending on E(0) and gamma > 0 is a constant. We assume geometrical conditions as in P. Martinez [7]. In the one/two-dimensional cases, we obtain exponential decay rate when the nonlinear dissipation behaves linearly close to the origin. The same result holds in higher dimension if the dissipative localized term behaves linearly.
dc.languageen
dc.publisherEUDOXUS PRESS, LLC
dc.rightsregistro bibliográfico
dc.subjectwave equation
dc.subjectNeumann boundary condition
dc.subjectnon-linear damping
dc.subjectlocalized damping
dc.subjectdecay rate
dc.subjectEXTERIOR DOMAIN
dc.subjectDECAY
dc.subjectTERMS
dc.titleStabilization of the wave equation with Neumann boundary condition and localized nonlinear damping
dc.typeartículo


Este ítem pertenece a la siguiente institución