Algebraic conditions for convergence of a quantum Markov semigroup to a steady state
dc.creator | Fagnola, Franco | |
dc.creator | Rebolledo, Rolando | |
dc.date.accessioned | 2024-01-10T13:45:43Z | |
dc.date.available | 2024-01-10T13:45:43Z | |
dc.date.created | 2024-01-10T13:45:43Z | |
dc.date.issued | 2008 | |
dc.identifier | 10.1142/S0219025708003142 | |
dc.identifier | 1793-6306 | |
dc.identifier | 0219-0257 | |
dc.identifier | https://doi.org/10.1142/S0219025708003142 | |
dc.identifier | https://repositorio.uc.cl/handle/11534/79070 | |
dc.identifier | WOS:000258880100009 | |
dc.description.abstract | Let T be a uniformly continuous quantum Markov semigroup on B(h) with generator represented in a standard GKSL form L(x) = -1/2 Sigma(l)(L-l*L(l)x - 2L(l)*xL(l) + xL(l)*L-l) + i[H, x] and a faithful normal invariant state rho. In this note we give new algebraic conditions for proving that T converges towards a steady state, possibly different from rho. Indeed, we show that this happens whenever the commutator of {H, L-l, L-l*vertical bar l >= 1} (i.e. its fixed point algebra) coincides with the commutator of {L-l, L-l*, delta(H)(L-l), delta(H)(L-l*), ..., delta(n)(H)(L-l), delta(n)(H)(L-l*)vertical bar l >= 1} (where delta(H)(X) = [H,X]) for some n >= 1. As an application we discuss the convergence to the unique invariant state of a spin chain model. | |
dc.language | en | |
dc.publisher | WORLD SCIENTIFIC PUBL CO PTE LTD | |
dc.rights | acceso restringido | |
dc.subject | quantum Markov semigroups | |
dc.subject | approach to equilibrium | |
dc.subject | Lindblad generator | |
dc.subject | multiple commutators | |
dc.subject | DYNAMICAL SEMIGROUPS | |
dc.subject | EQUILIBRIUM | |
dc.title | Algebraic conditions for convergence of a quantum Markov semigroup to a steady state | |
dc.type | artículo |