dc.creatorHanson, Timothy E.
dc.creatorJara, Alejandro
dc.creatorZhao, Luping
dc.date.accessioned2024-01-10T12:37:21Z
dc.date.available2024-01-10T12:37:21Z
dc.date.created2024-01-10T12:37:21Z
dc.date.issued2012
dc.identifier10.1214/12-BA705
dc.identifier1936-0975
dc.identifier1931-6690
dc.identifierhttps://doi.org/10.1214/12-BA705
dc.identifierhttps://repositorio.uc.cl/handle/11534/76827
dc.identifierWOS:000303602600008
dc.description.abstractIncorporating temporal and spatial variation could potentially enhance information gathered from survival data. This paper proposes a Bayesian semiparametric model for capturing spatio-temporal heterogeneity within the proportional hazards framework. The spatial correlation is introduced in the form of county level frailties. The temporal effect is introduced by considering the stratification of the proportional hazards model, where the time dependent hazards are indirectly modeled using a probability model for related probability distributions. With this aim, an autoregressive dependent tailfree process is introduced. The full Kullback-Leibler support of the proposed process is provided. The approach is illustrated using simulated data and data from the Surveillance Epidemiology and End Results database of the National Cancer Institute on patients in Iowa diagnosed with breast cancer.
dc.languageen
dc.publisherINT SOC BAYESIAN ANALYSIS
dc.rightsacceso abierto
dc.subjectSpatio-temporal modeling
dc.subjectDependent processes
dc.subjectTailfree processes
dc.subjectBreast cancer
dc.subjectMETROPOLIS-HASTINGS
dc.subjectASYMPTOTIC-BEHAVIOR
dc.subjectPOLYA TREES
dc.subjectINFERENCE
dc.subjectMIXTURES
dc.subjectDISTRIBUTIONS
dc.subjectREGRESSION
dc.titleA Bayesian Semiparametric Temporally-Stratified Proportional Hazards Model with Spatial Frailties
dc.typeartículo


Este ítem pertenece a la siguiente institución