dc.creatorGarcia Huidobro, Marta
dc.creatorYarur, Cecilia
dc.date.accessioned2024-01-10T12:38:50Z
dc.date.accessioned2024-05-02T17:40:33Z
dc.date.available2024-01-10T12:38:50Z
dc.date.available2024-05-02T17:40:33Z
dc.date.created2024-01-10T12:38:50Z
dc.date.issued2011
dc.identifier10.1016/j.na.2011.01.005
dc.identifier0362-546X
dc.identifierhttps://doi.org/10.1016/j.na.2011.01.005
dc.identifierhttps://repositorio.uc.cl/handle/11534/77106
dc.identifierWOS:000288255600006
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9268758
dc.description.abstractWe give general existence results of solutions (u, v) to the Dirichlet problem
dc.description.abstract{-Delta u = f (x, u, v) + c delta(0), -Delta u = g(x, u, v) + d delta(0) u = v = 0 on partial derivative B, in D'(B), (P)
dc.description.abstractwhere B is the unit ball centered at zero in R(N), N >= 3, delta(0) is the Dirac mass at 0 and c, d are nonnegative constants. No assumptions on the sign of the functions f and g are required. We also characterize the set of (c, d) such that problem (P) admits a solution in some particular cases of the nonlinearities f and g. (C) 2011 Elsevier Ltd. All rights reserved.
dc.languageen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.rightsacceso restringido
dc.subjectExistence
dc.subjectDirac mass
dc.subjectSingular solutions
dc.subjectEQUATIONS
dc.subjectNONEXISTENCE
dc.subjectSYSTEMS
dc.titleExistence of singular solutions for a Dirichlet problem containing a Dirac mass
dc.typeartículo


Este ítem pertenece a la siguiente institución