dc.creator | Garcia Huidobro, Marta | |
dc.creator | Yarur, Cecilia | |
dc.date.accessioned | 2024-01-10T12:38:50Z | |
dc.date.accessioned | 2024-05-02T17:40:33Z | |
dc.date.available | 2024-01-10T12:38:50Z | |
dc.date.available | 2024-05-02T17:40:33Z | |
dc.date.created | 2024-01-10T12:38:50Z | |
dc.date.issued | 2011 | |
dc.identifier | 10.1016/j.na.2011.01.005 | |
dc.identifier | 0362-546X | |
dc.identifier | https://doi.org/10.1016/j.na.2011.01.005 | |
dc.identifier | https://repositorio.uc.cl/handle/11534/77106 | |
dc.identifier | WOS:000288255600006 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9268758 | |
dc.description.abstract | We give general existence results of solutions (u, v) to the Dirichlet problem | |
dc.description.abstract | {-Delta u = f (x, u, v) + c delta(0), -Delta u = g(x, u, v) + d delta(0) u = v = 0 on partial derivative B, in D'(B), (P) | |
dc.description.abstract | where B is the unit ball centered at zero in R(N), N >= 3, delta(0) is the Dirac mass at 0 and c, d are nonnegative constants. No assumptions on the sign of the functions f and g are required. We also characterize the set of (c, d) such that problem (P) admits a solution in some particular cases of the nonlinearities f and g. (C) 2011 Elsevier Ltd. All rights reserved. | |
dc.language | en | |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | |
dc.rights | acceso restringido | |
dc.subject | Existence | |
dc.subject | Dirac mass | |
dc.subject | Singular solutions | |
dc.subject | EQUATIONS | |
dc.subject | NONEXISTENCE | |
dc.subject | SYSTEMS | |
dc.title | Existence of singular solutions for a Dirichlet problem containing a Dirac mass | |
dc.type | artículo | |