dc.creatorUribe Opazo, Miguel Angel
dc.creatorBorssoi, Joelmir André
dc.creatorGalea Rojas, Manuel Jesús
dc.date.accessioned2024-04-19T15:20:49Z
dc.date.accessioned2024-05-02T17:04:56Z
dc.date.available2024-04-19T15:20:49Z
dc.date.available2024-05-02T17:04:56Z
dc.date.created2024-04-19T15:20:49Z
dc.date.issued2012
dc.identifier10.1080/02664763.2011.607802
dc.identifier0266-4763
dc.identifierhttps://doi.org/10.1080/02664763.2011.607802
dc.identifierhttps://repositorio.uc.cl/handle/11534/85254
dc.identifierWOS:000302020400012
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9267637
dc.description.abstractSpatial linear models have been applied in numerous fields such as agriculture, geoscience and environmen-tal sciences, among many others. Spatial dependence structure modelling, using a geostatistical approach,is an indispensable tool to estimate the parameters that define this structure. However, this estimation maybe greatly affected by the presence of atypical observations in the sampled data. The purpose of this paperis to use diagnostic techniques to assess the sensitivity of the maximum-likelihood estimators, covariancefunctions and linear predictor to small perturbations in the data and/or the spatial linear model assump-tions. The methodology is illustrated with two real data sets. The results allowed us to conclude that thepresence of atypical values in the sample data have a strong influence on thematic maps, changing the spatial dependence structure.
dc.languageen
dc.publisherTAYLOR & FRANCIS LTD
dc.rightsacceso restringido
dc.subjectspatial statistics
dc.subjectGaussian models
dc.subjectinfluence diagnostics and precision agriculture
dc.subjectMaximun-Likelihood Estimation
dc.subjectLocal Influence
dc.subjectRegression-Models
dc.subjectNonlinear-Regression
dc.subjectCovariance
dc.subjectLeverage
dc.subjectDistributions
dc.titleInfluence diagnostics in Gaussian spatial linear models
dc.typeartículo


Este ítem pertenece a la siguiente institución