dc.creatorGalea Rojas, Manuel Jesús
dc.creatorde Castro, Mario
dc.date.accessioned2023-12-14T15:38:17Z
dc.date.available2023-12-14T15:38:17Z
dc.date.created2023-12-14T15:38:17Z
dc.date.issued2023
dc.identifier10.1016/j.chemolab.2023.105005
dc.identifier1873-3239
dc.identifier0169-7439
dc.identifierSCOPUS_ID: 85174747920
dc.identifierhttps://doi.org/10.1016/j.chemolab.2023.105005
dc.identifierhttps://repositorio.uc.cl/handle/11534/75494
dc.identifierWOS:001096317900001
dc.description.abstractIn this paper, we deal with inference about the structural parameters in a heteroscedastic functional measurement error models under the normal distribution assumption. Given a minimal sufficient statistic for the incidental parameters, the conditional maximum likelihood (CML) approach is used. We show that CML estimators have explicit expressions and their sampling distribution is exact. We also show that the classical test statistics to test hypotheses of interest coincide and have exact distributions. We apply the statistical inference tools developed to a data set on comparison of measurement methods.
dc.languageen
dc.publisherElsevier
dc.rightsacceso restringido
dc.subjectErrors-in-variables model
dc.subjectSufficient statistic
dc.subjectConditional maximum likelihood
dc.titleConditional likelihood inference in a heteroscedastic functional measurement error model
dc.typeartículo


Este ítem pertenece a la siguiente institución