dc.creator | Bertrand F. | |
dc.creator | Demkowicz L. | |
dc.creator | Gopalakrishnan J. | |
dc.creator | Heuer N. | |
dc.date.accessioned | 2024-01-10T14:24:15Z | |
dc.date.available | 2024-01-10T14:24:15Z | |
dc.date.created | 2024-01-10T14:24:15Z | |
dc.date.issued | 2019 | |
dc.identifier | 10.1515/cmam-2019-0097 | |
dc.identifier | 16099389 | |
dc.identifier | 16099389 16094840 | |
dc.identifier | SCOPUS_ID:85068843127 | |
dc.identifier | https://doi.org/10.1515/cmam-2019-0097 | |
dc.identifier | https://repositorio.uc.cl/handle/11534/80205 | |
dc.identifier | WOS:000473779800001 | |
dc.description.abstract | © 2019 Walter de Gruyter GmbH, Berlin/Boston 2019.Least-squares (LS) and discontinuous Petrov-Galerkin (DPG) finite element methods are an emerging methodology in the computational partial differential equations with unconditional stability and built-in a posteriori error control. This special issue represents the state of the art in minimal residual methods in the L2-norm for the LS schemes and in dual norm with broken test-functions in the DPG schemes. | |
dc.language | en | |
dc.publisher | De Gruyter | |
dc.rights | registro bibliográfico | |
dc.subject | Discontinuous Petrov-Galerkin | |
dc.subject | Least-Squares | |
dc.subject | Minimal Residual | |
dc.title | Recent Advances in Least-Squares and Discontinuous Petrov-Galerkin Finite Element Methods | |
dc.type | comunicación de congreso | |