dc.creatorBertrand F.
dc.creatorDemkowicz L.
dc.creatorGopalakrishnan J.
dc.creatorHeuer N.
dc.date.accessioned2024-01-10T14:24:15Z
dc.date.available2024-01-10T14:24:15Z
dc.date.created2024-01-10T14:24:15Z
dc.date.issued2019
dc.identifier10.1515/cmam-2019-0097
dc.identifier16099389
dc.identifier16099389 16094840
dc.identifierSCOPUS_ID:85068843127
dc.identifierhttps://doi.org/10.1515/cmam-2019-0097
dc.identifierhttps://repositorio.uc.cl/handle/11534/80205
dc.identifierWOS:000473779800001
dc.description.abstract© 2019 Walter de Gruyter GmbH, Berlin/Boston 2019.Least-squares (LS) and discontinuous Petrov-Galerkin (DPG) finite element methods are an emerging methodology in the computational partial differential equations with unconditional stability and built-in a posteriori error control. This special issue represents the state of the art in minimal residual methods in the L2-norm for the LS schemes and in dual norm with broken test-functions in the DPG schemes.
dc.languageen
dc.publisherDe Gruyter
dc.rightsregistro bibliográfico
dc.subjectDiscontinuous Petrov-Galerkin
dc.subjectLeast-Squares
dc.subjectMinimal Residual
dc.titleRecent Advances in Least-Squares and Discontinuous Petrov-Galerkin Finite Element Methods
dc.typecomunicación de congreso


Este ítem pertenece a la siguiente institución