dc.creatorSteinebach, Philipp J.
dc.creatorSchulte, Volker
dc.creatorKrause, Mariane
dc.creatorLanger Herrera, Alvaro
dc.creatorPerez Ewert, Carola J.
dc.creatorSteinebach, Christoph
dc.date.accessioned2024-03-06T15:37:12Z
dc.date.accessioned2024-05-02T16:38:29Z
dc.date.available2024-03-06T15:37:12Z
dc.date.available2024-05-02T16:38:29Z
dc.date.created2024-03-06T15:37:12Z
dc.date.issued2016
dc.identifier10.1109/CVPR52729.2023.02319
dc.identifier979-8-3503-0129-8
dc.identifier1464-066X
dc.identifier0020-7594
dc.identifierMEDLINE:34927594
dc.identifierhttps://doi.org/10.1109/CVPR52729.2023.02319
dc.identifierhttps://repositorio.uc.cl/handle/11534/84268
dc.identifierWOS:000413720405056
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9266698
dc.description.abstractModern machine learning pipelines are limited due to data availability, storage quotas, privacy regulations, and expensive annotation processes. These constraints make it difficult or impossible to train and update large-scale models on such dynamic annotated sets. Continual learning directly approaches this problem, with the ultimate goal of devising methods where a deep neural network effectively learns relevant patterns for new (unseen) classes, without significantly altering its performance on previously learned ones. In this paper, we address the problem of continual learning for video data. We introduce PIVOT, a novel method that leverages extensive knowledge in pre-trained models from the image domain, thereby reducing the number of trainable parameters and the associated forgetting. Unlike previous methods, ours is the first approach that effectively uses prompting mechanisms for continual learning without any in-domain pre-training. Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
dc.languageen
dc.relationIEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023, Vancouver, Canadá)
dc.rightsregistro bibliográfico
dc.subjectdepression
dc.subjectadolescence
dc.subjectprevention
dc.subjectearly intervention
dc.subjectInternet-based interventions
dc.subjectonline program
dc.subjectE-Health
dc.titleMindfulness-based depression prevention in children and youth. Connecting practice in Chile and Switzerland
dc.typecomunicación de congreso


Este ítem pertenece a la siguiente institución