artículo
#NFA Admits an FPRAS: Efficient Enumeration, Counting, and Uniform Generation for Logspace Classes
Fecha
2021Registro en:
10.1145/3477045
1557-735X
0004-5411
WOS:000744649600009
Autor
Arenas, Marcelo
Alberto Croquevielle, Luis
Jayaram, Rajesh
Riveros, Cristian
Institución
Resumen
In this work, we study two simple yet general complexity classes, based on logspace Turing machines, that provide a unifying framework for efficient query evaluation in areas such as information extraction and graph databases, among others. We investigate the complexity of three fundamental algorithmic problems for these classes: enumeration, counting, and uniform generation of solutions, and show that they have several desirable properties in this respect. Both complexity classes are defined in terms of non-deterministic logspace transducers (NL-transducers). For the first class, we consider the case of unambiguous NL-transducers, and we prove constant delay enumeration and both counting and uniform generation of solutions in polynomial time. For the second class, we consider unrestricted NL-transducers, and we obtain polynomial delay enumeration, approximate counting in polynomial time, and polynomial-time randomized algorithms for uniform generation. More specifically, we show that each problem in this second class admits a fully polynomial-time randomized approximation scheme (FPRAS) and a polynomial-time Las Vegas algorithm (with preprocessing) for uniform generation. Remarkably, the key idea to prove these results is to show that the fundamental problem #NFA admits an FPRAS, where #NFA is the problem of counting the number of strings of length n (given in unary) accepted by a non-deterministic finite automaton (NFA). While this problem is known to be #P-complete and, more precisely, SPANL-complete, it was open whether this problem admits an FPRAS. In this work, we solve this open problem and obtain as a welcome corollary that every function in SPANL admits an FPRAS.