dc.creatorSánchez, Luis
dc.creatorLeiva, Víctor
dc.creatorGalea Rojas, Manuel Jesús
dc.creatorSaulo, Helton
dc.date.accessioned2024-04-15T18:59:07Z
dc.date.accessioned2024-05-02T16:34:32Z
dc.date.available2024-04-15T18:59:07Z
dc.date.available2024-05-02T16:34:32Z
dc.date.created2024-04-15T18:59:07Z
dc.date.issued2020
dc.identifier1
dc.identifier10.3390/MATH8061000
dc.identifier2227-7390
dc.identifierSCOPUS_ID:2-s2.0-85087790913
dc.identifierhttps://doi.org/10.3390/MATH8061000
dc.identifierhttps://repositorio.uc.cl/handle/11534/85127
dc.identifierWOS:000552495600001
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9266563
dc.description.abstractIn the present paper, a novel spatial quantile regression model based on the Birnbaum-Saunders distribution is formulated. This distribution has been widely studied and applied in many fields. To formulate such a spatial model, a parameterization of the multivariate Birnbaum-Saunders distribution, where one of its parameters is associated with the quantile of the respective marginal distribution, is established. The model parameters are estimated by the maximum likelihood method. Finally, a data set is applied for illustrating the formulated model.
dc.rightsCreative Commons Atribución-NoComercial-CompartirIgual 4.0
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsacceso abierto
dc.subjectData analytics
dc.subjectGeostatistical models
dc.subjectMaximum likelihood method
dc.subjectMultivariate distributions
dc.subjectR software
dc.subjectStatistical parameterizations
dc.titleBirnbaum-Saunders quantile regression models with application to spatial data
dc.typeartículo


Este ítem pertenece a la siguiente institución