dc.creatorKlein, Abel
dc.creatorSadel, Christian Hermann
dc.date.accessioned2024-04-15T17:29:05Z
dc.date.accessioned2024-05-02T16:28:12Z
dc.date.available2024-04-15T17:29:05Z
dc.date.available2024-05-02T16:28:12Z
dc.date.created2024-04-15T17:29:05Z
dc.date.issued2012
dc.identifier10.48550/arXiv.1101.4328
dc.identifierhttps://doi.org/10.48550/arXiv.1101.4328
dc.identifierhttps://publons.com/wos-op/publon/57526319/
dc.identifierhttps://repositorio.uc.cl/handle/11534/85124
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9266325
dc.description.abstractThe Bethe Strip of width m is the cartesian product B × {1, . . . , m}, where B is the Bethe lattice (Cayley tree). We prove that Anderson models on the Bethe strip have “extended states” for small disorder. More precisely, we consider Anderson-like Hamiltonians Hλ = 1/2∆⊗1+ 1⊗A + λV on a Bethe strip with connectivity K ≥ 2, where A is an m × m symmetric matrix, V is a random matrix potential, and λ is the disorder parameter. Given any closed interval I ⊂ (−√K + amax,√K + amin), where amin and amax are the smallest and largest eigenvalues of the matrix A, we prove that for λ small the random Schrödinger operator Hλ has purely absolutely continuous spectrum in I with probability one and its integrated density of states is continuously differentiable on the interval I.
dc.languageen
dc.rightsacceso abierto
dc.titleAbsolutely Continuous Spectrum for Random Schroedinger Operators on the Bethe Strip
dc.typepreprint


Este ítem pertenece a la siguiente institución