dc.creatorGOROSTIZA, LG
dc.creatorREBOLLEDO, R
dc.date.accessioned2024-01-10T12:37:38Z
dc.date.accessioned2024-05-02T16:04:08Z
dc.date.available2024-01-10T12:37:38Z
dc.date.available2024-05-02T16:04:08Z
dc.date.created2024-01-10T12:37:38Z
dc.date.issued1993
dc.identifier10.1016/0167-7152(93)90098-4
dc.identifier0167-7152
dc.identifierhttps://doi.org/10.1016/0167-7152(93)90098-4
dc.identifierhttps://repositorio.uc.cl/handle/11534/76892
dc.identifierWOS:A1993LV21500008
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9265738
dc.description.abstractRandom fields in J'(R(d+1)) are associated to processes with paths in D([0, 1], J'(R(d))). This embedding provides a way to analyze weak convergence for such processes. The approach is also useful for real valued processes. The idea is to regard processes as time random fields. The method is illustrated with the fluctuations of an infinite particle system.
dc.languageen
dc.publisherELSEVIER SCIENCE BV
dc.rightsregistro bibliográfico
dc.subjectWEAK CONVERGENCE
dc.subjectRANDOM FIELD
dc.subjectNUCLEAR SPACE
dc.subjectPARTICLE SYSTEM
dc.subjectFLUCTUATION
dc.subjectSTOPPING-TIMES
dc.subjectTIGHTNESS
dc.subjectSYSTEM
dc.titleA RANDOM-FIELD APPROACH TO WEAK-CONVERGENCE OF PROCESSES
dc.typeartículo


Este ítem pertenece a la siguiente institución