dc.creatordel Pino, Manuel
dc.creatorMusso, Monica
dc.creatorPacard, Frank
dc.creatorPistoia, Angela
dc.date.accessioned2024-01-10T13:14:18Z
dc.date.accessioned2024-05-02T15:50:50Z
dc.date.available2024-01-10T13:14:18Z
dc.date.available2024-05-02T15:50:50Z
dc.date.created2024-01-10T13:14:18Z
dc.date.issued2011
dc.identifier10.1016/j.jde.2011.03.008
dc.identifier0022-0396
dc.identifierhttps://doi.org/10.1016/j.jde.2011.03.008
dc.identifierhttps://repositorio.uc.cl/handle/11534/78393
dc.identifierWOS:000294377500009
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9265384
dc.description.abstractWe consider the Yamabe equation Delta u + n(n-2_/4 vertical bar u vertical bar 4/n-2 u = 0 in R(n), n >= 3. Let k >= 1 and xi(k)(j) = (e(2j pi u/k), 0) is an element of R(n) = C x R(n-2). For all large k we find a solution of the form u(k)(x)= u(x) - Sigma(k)(j=1) mu(k) (-n-2/2) U X (mu(-1)(k) (x - xi(j)) +o(1), where U(x) = (2/1+vertical bar x vertical bar(2)) (n-2/2), mu(k) = c(n)/k(2) for n >= 4, mu k = c/k(2)(logk)(2) for n =3 and o(1) -> 0 uniformly as k -> +infinity. (C) 2011 Elsevier Inc. All rights reserved.
dc.languageen
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsacceso restringido
dc.subjectCRITICAL SOBOLEV GROWTH
dc.subjectGLOBAL WELL-POSEDNESS
dc.subjectELLIPTIC-EQUATIONS
dc.subjectBLOW-UP
dc.subjectSCATTERING
dc.titleLarge energy entire solutions for the Yamabe equation
dc.typeartículo


Este ítem pertenece a la siguiente institución