dc.creator | Musso, Monica | |
dc.creator | Pistoia, Angela | |
dc.date.accessioned | 2024-01-10T12:42:38Z | |
dc.date.accessioned | 2024-05-02T15:48:55Z | |
dc.date.available | 2024-01-10T12:42:38Z | |
dc.date.available | 2024-05-02T15:48:55Z | |
dc.date.created | 2024-01-10T12:42:38Z | |
dc.date.issued | 2006 | |
dc.identifier | 10.1016/j.matpur.2006.10.006 | |
dc.identifier | 0021-7824 | |
dc.identifier | https://doi.org/10.1016/j.matpur.2006.10.006 | |
dc.identifier | https://repositorio.uc.cl/handle/11534/77527 | |
dc.identifier | WOS:000243143900005 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9265307 | |
dc.description.abstract | We consider the problem Delta u + \u\(4/n-2) u = 0 in Omega(epsilon), u = 0 on partial derivative Omega(epsilon), where Omega(epsilon) := Omega \ B (0, epsilon) and Omega is a bounded smooth domain in R(N), which contains the origin and is symmetric with respect to the origin, N >= 3 and epsilon is a positive parameter. As epsilon goes to zero, we construct sign changing solutions with multiple blow up at the origin. (C) 2006 Elsevier Masson SAS. All rights reserved. | |
dc.language | en | |
dc.publisher | GAUTHIER-VILLARS/EDITIONS ELSEVIER | |
dc.rights | acceso restringido | |
dc.subject | critical Sobolev exponent | |
dc.subject | sign changing solution | |
dc.subject | multiple blow up | |
dc.subject | BREZIS-NIRENBERG PROBLEM | |
dc.subject | MINIMAL NODAL SOLUTIONS | |
dc.subject | VARIATIONAL PROBLEM | |
dc.subject | SYMMETRIC DOMAIN | |
dc.subject | CRITICAL GROWTH | |
dc.subject | EQUATIONS | |
dc.subject | TOPOLOGY | |
dc.subject | HOLES | |
dc.subject | COMPACTNESS | |
dc.subject | EXISTENCE | |
dc.title | Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains | |
dc.type | artículo | |