dc.creatorMusso, Monica
dc.creatorPistoia, Angela
dc.date.accessioned2024-01-10T12:42:38Z
dc.date.accessioned2024-05-02T15:48:55Z
dc.date.available2024-01-10T12:42:38Z
dc.date.available2024-05-02T15:48:55Z
dc.date.created2024-01-10T12:42:38Z
dc.date.issued2006
dc.identifier10.1016/j.matpur.2006.10.006
dc.identifier0021-7824
dc.identifierhttps://doi.org/10.1016/j.matpur.2006.10.006
dc.identifierhttps://repositorio.uc.cl/handle/11534/77527
dc.identifierWOS:000243143900005
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9265307
dc.description.abstractWe consider the problem Delta u + \u\(4/n-2) u = 0 in Omega(epsilon), u = 0 on partial derivative Omega(epsilon), where Omega(epsilon) := Omega \ B (0, epsilon) and Omega is a bounded smooth domain in R(N), which contains the origin and is symmetric with respect to the origin, N >= 3 and epsilon is a positive parameter. As epsilon goes to zero, we construct sign changing solutions with multiple blow up at the origin. (C) 2006 Elsevier Masson SAS. All rights reserved.
dc.languageen
dc.publisherGAUTHIER-VILLARS/EDITIONS ELSEVIER
dc.rightsacceso restringido
dc.subjectcritical Sobolev exponent
dc.subjectsign changing solution
dc.subjectmultiple blow up
dc.subjectBREZIS-NIRENBERG PROBLEM
dc.subjectMINIMAL NODAL SOLUTIONS
dc.subjectVARIATIONAL PROBLEM
dc.subjectSYMMETRIC DOMAIN
dc.subjectCRITICAL GROWTH
dc.subjectEQUATIONS
dc.subjectTOPOLOGY
dc.subjectHOLES
dc.subjectCOMPACTNESS
dc.subjectEXISTENCE
dc.titleSign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains
dc.typeartículo


Este ítem pertenece a la siguiente institución