dc.creatorQuintana, Fernando A.
dc.creatorSteel, Mark F. J.
dc.creatorFerreira, Jose T. A. S.
dc.date.accessioned2024-01-10T13:13:08Z
dc.date.available2024-01-10T13:13:08Z
dc.date.created2024-01-10T13:13:08Z
dc.date.issued2009
dc.identifier10.1214/09-BA418
dc.identifier1931-6690
dc.identifierhttps://doi.org/10.1214/09-BA418
dc.identifierhttps://repositorio.uc.cl/handle/11534/78270
dc.identifierWOS:000273483500008
dc.description.abstractBased on a constructive representation, which distinguishes between a skewing mechanism P and an underlying symmetric distribution F, we introduce two flexible classes of distributions. They are generated by nonparametric modelling of either P or F. We examine properties of these distributions and consider how they can help us to identify which aspects of the data are badly captured by simple symmetric distributions. Within a Bayesian framework, we investigate useful prior settings and conduct inference through MCMC methods. On the basis of simulated and real data examples, we make recommendations for the use of our models in practice. Our models perform well in the context of density estimation using the multimodal galaxy data and for regression modelling with data on the body mass index of athletes.
dc.languageen
dc.publisherINT SOC BAYESIAN ANALYSIS
dc.rightsregistro bibliográfico
dc.subjectdensity estimation
dc.subjectlocation-scale
dc.subjectmodal regression
dc.subjectmoment existence
dc.subjectskewness
dc.subjectunimodality
dc.subjectBAYESIAN DENSITY-ESTIMATION
dc.subjectT-DISTRIBUTION
dc.subjectMIXTURES
dc.subjectMODE
dc.titleFlexible Univariate Continuous Distributions
dc.typeartículo


Este ítem pertenece a la siguiente institución