dc.creatorGrigoriadis, MD
dc.creatorKhachiyan, LG
dc.creatorPorkolab, L
dc.creatorVillavicencio, J
dc.date.accessioned2024-01-10T12:04:17Z
dc.date.available2024-01-10T12:04:17Z
dc.date.created2024-01-10T12:04:17Z
dc.date.issued2001
dc.identifier10.1137/S1052623499358689
dc.identifier1095-7189
dc.identifier1052-6234
dc.identifierhttps://doi.org/10.1137/S1052623499358689
dc.identifierhttps://repositorio.uc.cl/handle/11534/75751
dc.identifierWOS:000169069900013
dc.description.abstractWe present a Lagrangian decomposition algorithm which uses logarithmic potential reduction to compute an epsilon -approximate solution of the general max-min resource sharing problem with M nonnegative concave constraints on a convex set B. We show that this algorithm runs in O(M (epsilon (-2) + In M)) iterations, a data independent bound which is optimal up to polylogarithmic factors for any fixed relative accuracy epsilon is an element of (0,1). In the block-angular case, B is the product of K convex sets ( blocks) and each constraint function is block separable. For such models, an iteration of our method requires a Theta (epsilon) approximate solution of K independent block maximization problems which can be computed in parallel.
dc.languageen
dc.publisherSIAM PUBLICATIONS
dc.rightsregistro bibliográfico
dc.subjectapproximation algorithm
dc.subjectcovering problem
dc.subjectLagrangian decomposition
dc.subjectlogarithmic potential
dc.subjectpacking problem
dc.subjectresource sharing
dc.subjectstructured optimization
dc.subjectDECOMPOSITION
dc.subjectALGORITHM
dc.titleApproximate max-min resource sharing for structured concave optimization
dc.typeartículo


Este ítem pertenece a la siguiente institución