dc.creatorHirsh, Eduardo
dc.creatorLewin, Renato A.
dc.date.accessioned2024-01-10T13:10:59Z
dc.date.accessioned2024-05-02T15:24:14Z
dc.date.available2024-01-10T13:10:59Z
dc.date.available2024-05-02T15:24:14Z
dc.date.created2024-01-10T13:10:59Z
dc.date.issued2008
dc.identifier10.1002/malq.200710021
dc.identifier0942-5616
dc.identifierhttps://doi.org/10.1002/malq.200710021
dc.identifierhttps://repositorio.uc.cl/handle/11534/77972
dc.identifierWOS:000255079900003
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9264695
dc.description.abstractWe study the algebraizability of the logics constructed using literal-paraconsistent and literal-paracomplete matrices described by Lewin and Mikenberg in [11], proving that they are all algebraizable in the sense of Blok and Pigozzi in [31 but not finitely algebraizable. A characterization of the finitely algebraizable logics defined by LPP-matrices is given.
dc.description.abstractWe also make an algebraic study of the equivalent algebraic semantics of the logics associated to the matrices M-2,2(3), M-2,1(3), M-1,1(3), M-1,(3)(3) and M-4 appearing in [11] proving that they are not varieties and finding the free algebra over one generator. 1 Introduction and preliminaries (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.languageen
dc.publisherWILEY-V C H VERLAG GMBH
dc.rightsacceso restringido
dc.subjectalgebraizable logic
dc.subjectmatrix semantics
dc.subjectparaconsistency
dc.subjectparacompleteness
dc.titleAlgebraization of logics defined by literal-paraconsistent or literal-paracomplete matrices
dc.typeartículo


Este ítem pertenece a la siguiente institución