dc.creator | Hirsh, Eduardo | |
dc.creator | Lewin, Renato A. | |
dc.date.accessioned | 2024-01-10T13:10:59Z | |
dc.date.accessioned | 2024-05-02T15:24:14Z | |
dc.date.available | 2024-01-10T13:10:59Z | |
dc.date.available | 2024-05-02T15:24:14Z | |
dc.date.created | 2024-01-10T13:10:59Z | |
dc.date.issued | 2008 | |
dc.identifier | 10.1002/malq.200710021 | |
dc.identifier | 0942-5616 | |
dc.identifier | https://doi.org/10.1002/malq.200710021 | |
dc.identifier | https://repositorio.uc.cl/handle/11534/77972 | |
dc.identifier | WOS:000255079900003 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9264695 | |
dc.description.abstract | We study the algebraizability of the logics constructed using literal-paraconsistent and literal-paracomplete matrices described by Lewin and Mikenberg in [11], proving that they are all algebraizable in the sense of Blok and Pigozzi in [31 but not finitely algebraizable. A characterization of the finitely algebraizable logics defined by LPP-matrices is given. | |
dc.description.abstract | We also make an algebraic study of the equivalent algebraic semantics of the logics associated to the matrices M-2,2(3), M-2,1(3), M-1,1(3), M-1,(3)(3) and M-4 appearing in [11] proving that they are not varieties and finding the free algebra over one generator. 1 Introduction and preliminaries (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | |
dc.language | en | |
dc.publisher | WILEY-V C H VERLAG GMBH | |
dc.rights | acceso restringido | |
dc.subject | algebraizable logic | |
dc.subject | matrix semantics | |
dc.subject | paraconsistency | |
dc.subject | paracompleteness | |
dc.title | Algebraization of logics defined by literal-paraconsistent or literal-paracomplete matrices | |
dc.type | artículo | |