dc.creatorSen Gupta, Jhuma
dc.creatorSinha, Rajen Kumar
dc.date.accessioned2024-01-10T12:04:16Z
dc.date.accessioned2024-05-02T15:22:49Z
dc.date.available2024-01-10T12:04:16Z
dc.date.available2024-05-02T15:22:49Z
dc.date.created2024-01-10T12:04:16Z
dc.date.issued2017
dc.identifier10.1080/01630563.2017.1338730
dc.identifier1532-2467
dc.identifier0163-0563
dc.identifierhttps://doi.org/10.1080/01630563.2017.1338730
dc.identifierhttps://repositorio.uc.cl/handle/11534/75747
dc.identifierWOS:000415657700001
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9264667
dc.description.abstractWe study residual-based a posteriori error estimates for both the spatially discrete and the fully discrete lumped mass finite element approximation for parabolic problems in a bounded convex polygonal domain in (2). In particular, the space discretization uses finite element spaces that are assumed to be nested one and the time discretization is based on the backward Euler approximation. The main key features used in the analysis are the reconstruction technique and energy argument combined with the stability of L-2 projection in H-1(). The a posteriori error estimates we derive are optimal order in both the -norms.
dc.languageen
dc.publisherTAYLOR & FRANCIS INC
dc.rightsregistro bibliográfico
dc.subjectA posteriori error estimates
dc.subjectelliptic reconstruction
dc.subjectlumped mass finite element approximation
dc.subjectparabolic problems
dc.subject65M60
dc.subject65M15
dc.subject65N15
dc.titleA Posteriori Error Estimates for Lumped Mass Finite Element Method for Linear Parabolic Problems Using Elliptic Reconstruction
dc.typeartículo


Este ítem pertenece a la siguiente institución