dc.creatorStreltsov, Victor A.
dc.creatorLuang, Sukanya
dc.creatorPeisley, Alys
dc.creatorVarghese, Joseph N.
dc.creatorKetudat Cairns, James R.
dc.creatorFort, Sebastien
dc.creatorHijnen, Marcel
dc.creatorTvaroška, Igor
dc.creatorArda, Ana
dc.creatorJiménez-Barbero, Jesús
dc.creatorAlfonso-Prieto, Mercedes
dc.creatorRovira, Carme
dc.creatorMendoza, Fernanda
dc.creatorTiessler-Sala, Laura
dc.creatorSánchez-Aparicio, José-Emilio
dc.creatorRodríguez-Guerra, Jaime
dc.creatorM. Lluch, José
dc.creatorMaréchal, Jean-Didier
dc.creatorMasgrau, Laura
dc.creatorHrmova, Maria
dc.date.accessioned2021-09-15T13:45:46Z
dc.date.accessioned2024-05-02T15:01:50Z
dc.date.available2021-09-15T13:45:46Z
dc.date.available2024-05-02T15:01:50Z
dc.date.created2021-09-15T13:45:46Z
dc.date.issued2019-12
dc.identifierNature Communications Volume 10, Issue 11 December 2019 Article number 2222
dc.identifier2041-1723
dc.identifierhttp://repositorio.unab.cl/xmlui/handle/ria/20270
dc.identifier10.1038/s41467-019-09691-z
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9261331
dc.description.abstractSubstrates associate and products dissociate from enzyme catalytic sites rapidly, which hampers investigations of their trajectories. The high-resolution structure of the native Hordeum exo-hydrolase HvExoI isolated from seedlings reveals that non-covalently trapped glucose forms a stable enzyme-product complex. Here, we report that the alkyl β-d-glucoside and methyl 6-thio-β-gentiobioside substrate analogues perfused in crystalline HvExoI bind across the catalytic site after they displace glucose, while methyl 2-thio-β-sophoroside attaches nearby. Structural analyses and multi-scale molecular modelling of nanoscale reactant movements in HvExoI reveal that upon productive binding of incoming substrates, the glucose product modifies its binding patterns and evokes the formation of a transient lateral cavity, which serves as a conduit for glucose departure to allow for the next catalytic round. This path enables substrate-product assisted processive catalysis through multiple hydrolytic events without HvExoI losing contact with oligo- or polymeric substrates. We anticipate that such enzyme plasticity could be prevalent among exo-hydrolases. © 2019, Crown.
dc.languageen
dc.publisherNature Publishing Group
dc.rightshttps://creativecommons.org/licenses/by/4.0/deed.es
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.subjectBiocatalysis
dc.subjectCatalytic Domain
dc.subjectCrystallography, X-Ray
dc.subjectEnzyme Assays
dc.subjectGlucosidases
dc.subjectGlycosides
dc.subjectHordeum
dc.subjectModels, Molecular
dc.subjectMolecular Dynamics Simulation
dc.subjectNuclear Magnetic Resonance, Biomolecular
dc.subjectPlant Proteins
dc.subjectRecombinant Proteins
dc.subjectSeedlings
dc.subjectSubstrate Specificity
dc.titleDiscovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site
dc.typeArtículo


Este ítem pertenece a la siguiente institución