Asymptotics for the heat kernel in multicone domains
dc.creator | Collet, Pierre | |
dc.creator | Duarte, Mauricio | |
dc.creator | Martínez, Servet | |
dc.creator | Prat-Waldron, Arturo | |
dc.creator | San Martín, Jaime | |
dc.date.accessioned | 2023-11-21T17:01:14Z | |
dc.date.accessioned | 2024-05-02T15:01:40Z | |
dc.date.available | 2023-11-21T17:01:14Z | |
dc.date.available | 2024-05-02T15:01:40Z | |
dc.date.created | 2023-11-21T17:01:14Z | |
dc.date.issued | 2016-02 | |
dc.identifier | Journal of Functional Analysis. Volume 270, Issue 4, Pages 1269 - 1298. 15 February 2016 | |
dc.identifier | 0022-1236 | |
dc.identifier | https://repositorio.unab.cl/xmlui/handle/ria/54009 | |
dc.identifier | 10.1016/j.jfa.2015.10.021 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9261296 | |
dc.description.abstract | A multicone domain Ω ⊆ Rn is an open, connected set that resembles a finite collection of cones far away from the origin. We study the rate of decay in time of the heat kernel p(t, x, y) of a Brownian motion killed upon exiting Ω, using both probabilistic and analytical techniques. We find that the decay is polynomial and we characterize limt→∞ t1+αp(t, x, y) in terms of the Martin boundary of Ω at infinity, where α > 0 depends on the geometry of Ω. We next derive an analogous result for tκ/2Px(T >t), with κ = 1 + α − n/2, where T is the exit time from Ω. Lastly, we deduce the renormalized Yaglom limit for the process conditioned on survival. | |
dc.language | en | |
dc.publisher | Academic Press Inc. | |
dc.subject | Heat Kernel | |
dc.subject | Brownian Motion | |
dc.subject | Yaglom Limit | |
dc.subject | Martin Boundary | |
dc.title | Asymptotics for the heat kernel in multicone domains | |
dc.type | Artículo |