dc.creatorCollet, Pierre
dc.creatorDuarte, Mauricio
dc.creatorMartínez, Servet
dc.creatorPrat-Waldron, Arturo
dc.creatorSan Martín, Jaime
dc.date.accessioned2023-11-21T17:01:14Z
dc.date.accessioned2024-05-02T15:01:40Z
dc.date.available2023-11-21T17:01:14Z
dc.date.available2024-05-02T15:01:40Z
dc.date.created2023-11-21T17:01:14Z
dc.date.issued2016-02
dc.identifierJournal of Functional Analysis. Volume 270, Issue 4, Pages 1269 - 1298. 15 February 2016
dc.identifier0022-1236
dc.identifierhttps://repositorio.unab.cl/xmlui/handle/ria/54009
dc.identifier10.1016/j.jfa.2015.10.021
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9261296
dc.description.abstractA multicone domain Ω ⊆ Rn is an open, connected set that resembles a finite collection of cones far away from the origin. We study the rate of decay in time of the heat kernel p(t, x, y) of a Brownian motion killed upon exiting Ω, using both probabilistic and analytical techniques. We find that the decay is polynomial and we characterize limt→∞ t1+αp(t, x, y) in terms of the Martin boundary of Ω at infinity, where α > 0 depends on the geometry of Ω. We next derive an analogous result for tκ/2Px(T >t), with κ = 1 + α − n/2, where T is the exit time from Ω. Lastly, we deduce the renormalized Yaglom limit for the process conditioned on survival.
dc.languageen
dc.publisherAcademic Press Inc.
dc.subjectHeat Kernel
dc.subjectBrownian Motion
dc.subjectYaglom Limit
dc.subjectMartin Boundary
dc.titleAsymptotics for the heat kernel in multicone domains
dc.typeArtículo


Este ítem pertenece a la siguiente institución