dc.creatorSgalletta, Cecilia
dc.creatorIorio, Giuliano
dc.creatorMapelli, Michela
dc.creatorArtale, M. Celeste
dc.creatorBoco, Lumen
dc.creatorChattopadhyay, Debatri
dc.creatorLapi, Andrea
dc.creatorPossenti, Andrea
dc.creatorRinaldi, Stefano
dc.creatorSpera, Mario
dc.date.accessioned2023-10-30T15:11:06Z
dc.date.accessioned2024-05-02T14:55:02Z
dc.date.available2023-10-30T15:11:06Z
dc.date.available2024-05-02T14:55:02Z
dc.date.created2023-10-30T15:11:06Z
dc.date.issued2023-09-01
dc.identifierMonthly Notices of the Royal Astronomical Society Volume 526, Issue 2, Pages 2210 - 2229 1 December 2023
dc.identifier0035-8711
dc.identifierhttps://repositorio.unab.cl/xmlui/handle/ria/53715
dc.identifier10.1093/mnras/stad2768
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9260097
dc.description.abstractGalactic binary neutron stars (BNSs) are a unique laboratory to probe the evolution of BNSs and their progenitors. Here, we use a new version of the population synthesis code sevn to evolve the population of Galactic BNSs, by modelling the spin up and down of pulsars self-consistently. We analyse the merger rate, orbital period Porb, eccentricity e, spin period P, and spin period derivative of the BNS population. Values of the common envelope parameter α = 1-3 and an accurate model of the Milky Way star formation history best reproduce the BNS merger rate in our Galaxy (Myr-1). We apply radio-selection effects to our simulated BNSs and compare them to the observed population. Using a Dirichlet process Gaussian mixture method, we evaluate the four-dimensional likelihood in the space, by comparing our radio-selected simulated pulsars against Galactic BNSs. Our analysis favours an uniform initial distribution for both the magnetic field (1010-13 G) and the spin period (10-100 ms). The implementation of radio selection effects is critical to match not only the spin period and period derivative, but also the orbital period and eccentricity of Galactic BNSs. According to our fiducial model, the Square Kilometre Array will detect ∼20 new BNSs in the Milky Way.
dc.languageen
dc.publisherOxford University Press
dc.rightshttps://creativecommons.org/licenses/by/4.0/deed.en
dc.rightshttps://creativecommons.org/licenses/by/4.0/deed.en
dc.rightsCC BY 4.0 DEED Attribution 4.0 International
dc.subjectbinaries: general
dc.subjectgravitational waves
dc.subjectmethods: numerical
dc.subjectpulsars: general
dc.subjectstars: neutron
dc.titleBinary neutron star populations in the Milky Way
dc.typeArtículo


Este ítem pertenece a la siguiente institución