dc.creatorAubrey, Michael L.
dc.creatorWiers, Brian M.
dc.creatorAndrews, Sean C.
dc.creatorSakurai, Tsuneaki
dc.creatorReyes-Lillo, Sebastian E.
dc.creatorHamed, Samia M.
dc.creatorYu, Chung-Jui
dc.creatorDarago, Lucy E.
dc.creatorMason, Jarad A.
dc.creatorBaeg, Jin-Ook
dc.creatorGrandjean, Fernande
dc.creatorLong, Gary J.
dc.creatorSeki, Shu
dc.creatorNeaton, Jeffrey B.
dc.creatorYang, Peidong
dc.date.accessioned2022-07-28T23:06:11Z
dc.date.accessioned2024-05-02T14:53:17Z
dc.date.available2022-07-28T23:06:11Z
dc.date.available2024-05-02T14:53:17Z
dc.date.created2022-07-28T23:06:11Z
dc.date.issued2018-07
dc.identifierNature Materials Volume 17, Issue 7, Pages 625 - 6321 July 2018
dc.identifier14761122
dc.identifierhttps://repositorio.unab.cl/xmlui/handle/ria/23373
dc.identifier10.1038/s41563-018-0098-1
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9259980
dc.description.abstractConductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K x Fe2(BDP)3 (0 ≤ x ≤ 2; BDP2- = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics. Through a battery of spectroscopic methods, computational techniques and single-microcrystal field-effect transistor measurements, we demonstrate that fractional reduction of Fe2(BDP)3 results in a metal-organic framework that displays a nearly 10,000-fold enhancement in conductivity along a single crystallographic axis. The attainment of such properties in a K x Fe2(BDP)3 field-effect transistor represents the realization of a general synthetic strategy for the creation of new porous conductor-based devices. © 2018 The Author(s).
dc.languageen
dc.publisherNature Publishing Group
dc.rightsCC BY 4.0 Publisher's Bespoke License
dc.subjectMetal-Organic Frameworks
dc.subjectCoordination Polymer
dc.subjectQuantum Hall Effect
dc.subjectConductive materials
dc.subjectSpectroscopic analysis
dc.titleElectron delocalization and charge mobility as a function of reduction in a metal-organic framework
dc.typeArtículo


Este ítem pertenece a la siguiente institución