dc.creatorBustamante, Sebastián
dc.creatorQuiroz, Daniel A.
dc.creatorStein, Maya
dc.creatorZamora, José
dc.date.accessioned2023-04-11T21:58:44Z
dc.date.accessioned2024-05-02T14:51:05Z
dc.date.available2023-04-11T21:58:44Z
dc.date.available2024-05-02T14:51:05Z
dc.date.created2023-04-11T21:58:44Z
dc.date.issued2022-12
dc.identifierEuropean Journal of CombinatoricsOpen AccessVolume 106December 2022 Article number 103550
dc.identifier0195-6698
dc.identifierhttps://repositorio.unab.cl/xmlui/handle/ria/48451
dc.identifier10.1016/j.ejc.2022.103550
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9259414
dc.description.abstractThe analogue of Hadwiger's conjecture for the immersion order states that every graph G contains Kχ(G) as an immersion. If true, this would imply that every graph with n vertices and independence number α contains K⌈[Formula presented]⌉ as an immersion. The best currently known bound for this conjecture is due to Gauthier, Le and Wollan, who recently proved that every graph G contains an immersion of a clique on ⌈[Formula presented]⌉ vertices. Their result implies that every n-vertex graph with independence number α contains an immersion of a clique on ⌈[Formula presented]−1.13⌉ vertices. We improve on this result for all α≥3, by showing that every n-vertex graph with independence number α≥3 contains an immersion of a clique on ⌊[Formula presented]⌋−1 vertices, where f is a nonnegative function. © 2022
dc.languageen
dc.publisherAcademic Press
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.subjectHadwiger's Conjecture
dc.subjectConnected Graph
dc.subjectGraph
dc.titleClique immersions and independence number
dc.typeArtículo


Este ítem pertenece a la siguiente institución