Dissertação
Estudo da reação de remoção do monóxido de carbono com catalisadores industrial e sol-gel à base de cobre
Autor
Ferrari, Tatiane Caroline
Institución
Resumen
Orientador: Prof. Dr. Luiz Mário de Matos Jorge Coorientador: Prof.ª Dr.ª Mara Heloisa Neves Olsen Scaliante Dissertação (mestrado em Engenharia Química)--Universidade Estadual de Maringá, Centro de Tecnologia, Dep. de Engenharia Química, 2015 RESUMO: A reação de deslocamento gás-água (water gas shift reaction - WGSR) tem sido muito utilizada como forma de remover o CO venenoso da corrente de hidrogênio proveniente da reforma de metanol, para aplicação em células a combustível. No presente trabalho, catalisadores de Cu/ZnO/Al2O3 foram utilizados para estudo dessa reação. Os catalisadores utilizados foram o comercial HiFUEL W220 e um preparado pelo método sol-gel. Os materiais foram secos e, por meio da obtenção da temperatura de calcinação pela análise de TGA-DSC, foram calcinados e caracterizados em relação a Medidas de adsorção e dessorção de N2 que inclui: área BET, volume de poros, diâmetro de poros e isotermas de adsorção, TPR, STPR, DRX, TPD, MEV. Depois de calcinados, os catalisadores foram carregados no reator, reduzidos e então testados na WGSR a baixas temperaturas (200 - 250°C). Foram realizados testes de longa duração (nos quais a temperatura e a razão molar CO/vapor d’água foram mantidas em 200?C e 1/2, respectivamente) e testes de curta duração (nos quais a temperatura foi variada entre 200 e 250?C e a razão molar CO/vapor d’água entre 1/4 e 1/2). Foram analisados a conversão de CO e o rendimento de H2. Os produtos gasosos e líquidos que efluentes do reator foram analisados por cromatografia gasosa. Houve produção de CO2, H2 e de coque em pequenas quantidades. As conversões obtidas para os testes de longa duração foram superiores para o catalisador sintetizado pelo método sol-gel. O coque foi analisado por MEV para o catalisador industrial. Também foi realizado um balanço de carbono para identificação de coque. O catalisador sol-gel, segundo o balanço de carbono, formou menos coque. Um modelo matemático foi desenvolvido para um reator de abatimento de CO, e quatro cinéticas presentes em literatura foram aplicadas a esse modelo (elementar; AYASTUY et. al., 2005; AMADEO e LABORDE, 1995 e CRISCUOLI et al., 2000). O modelo matemático proposto foi resolvido no MATLAB. Os comportamentos obtidos para a conversão de CO foram comparados com os dados experimentais. A cinética que apresentou um melhor ajuste para os dados do catalisador sol-gel foi a proposta por AYASTUY et al. (2005), para as razões molares CO/vapor d’água de ½ e 1/3 e a proposta por CRISCUOLI et al. (2000) para a razão molar de 1/4. Com o melhor resultado obtido, para o mesmo tempo de contato, foi determinado o comprimento do reator necessário para que a concentração de CO decresça de 4000 mg L-1, que segundo MENECHINI NETO et al. (2014) é a concentração média de CO na saída de um reator de reforma a vapor de metanol, até o limite de CO aceitável para aplicação em células a combustível (50 mg L-1) ABSTRACT: The water gas shift reaction (WGSR), has been widely used as a way to remove the poisonous CO from the hydrogen current from methanol reforming. In this study, Cu/ZnO/ Al2O3 catalysts were used to study this reaction. The catalysts used were commercial HiFUEL W220 and one prepared by the sol-gel method. The materials were dried, and the calcination temperature was determined by DSC-TGA analysis. The materials were calcined and characterized according to the BET area, pore diameter and pore volume, TPR, S-TPR, XRD, TPD, SEM. After calcination, the catalysts were loaded into the reactor, then reduced and tested in the WGSR at low temperatures (200-250°C). Long duration tests have been performed (in which the temperature and the CO/steam molar ratio were kept at 200?C and 1/2, respectively). Short duration tests have been carried out temperature (between 200 and 250?C) and CO/steam molar ratio (between 1/4 and 1/2). Conversion of CO and H2 yield were examined. Gaseous and liqui products leaving the reactor were analyzed by gas chromatography. CO2 and H2 were produced, along with small quantities of coke. The conversions obtained for the long-term tests were higher when the catalyst synthesized by the sol-gel method was used. The coke was analyzed by SEM for the industrial catalyst. A carbon balance for identification of coke was also carried out. According to this carbon balance, the sol-gel catalyst yielded less. A mathematical model was developed for a CO reduction reactor and four kinetic expressions from the literature have been applied to this model (elementary, AYASTUY et al. (2005), AMADEO and LABORDE (1995), and Criscuoli et al. (2000)). The proposed mathematical model was solved in MATLAB. The behavior obtained for the CO conversion were compared with experimental data. The kinetics showed a better fit for the sol-gel catalyst data was proposed by AYASTUY et al. (2005) to the molar ratios CO / water vapor ½ and 1/3 and proposed by Criscuoli et al. (2000) molar ratio to 1/4. In the best results obtained for the same contact time, the reactor was determined length required for the CO concentration decreases to 4000 mg L-1, which according MENECHINI Neto et al. (2014) is the average concentration of CO at the exit of a reactor for methanol steam reforming, CO to the acceptable limit for application in fuel cells (50 mg L-1)