Control local en el Espacio de Estados para un Prototipo real de Péndulo invertido traslacional
State-space local control for a real prototype of a translational inverted pendulum
dc.creator | Herrera Sepúlveda, Lyda Vanessa | |
dc.creator | Melo Pinzón, Uriel Alberto | |
dc.creator | Alzate Castaño, Ricardo | |
dc.date | 2019-02-18T19:17:54Z | |
dc.date | 2019-02-18T19:17:54Z | |
dc.date | 2014-12-31 | |
dc.date.accessioned | 2023-10-03T20:12:07Z | |
dc.date.available | 2023-10-03T20:12:07Z | |
dc.identifier | Herrera Sepúlveda, L., Melo Pinzón, U., & Alzate Castaño, R. (2014). Control local en el espacio de estados para un prototipo real de péndulo invertido traslacional. INGE CUC, 10(2), 36 - 42. Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/488 | |
dc.identifier | 0122-6517, 2382-4700 electrónico | |
dc.identifier | http://hdl.handle.net/11323/2598 | |
dc.identifier | 2382-4700 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | 0122-6517 | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174778 | |
dc.description | Este artículo aborda la readecuación de un prototipo de laboratorio para péndulo invertido traslacional, buscando recobrar su capacidad funcional y ejercer control local para mantener erguido el brazo del péndulo. En términos de control, el problema que se va a resolver será la viabilidad de una técnica de control por realimentación de estados en el prototipo experimental empleando un dispositivo de proceso de bajo costo. Se realizó por tanto, el diseño y la implementación de circuitos para el acondicionamiento de señales entre los dispositivos de medida, actuación y control. Se diseñó e implementó una estrategia de control por realimentación de estados en un microcontrolador Arduino Mega. Los resultados de simulación predicen la regulación del estado, que posteriormente fue corroborada de manera experimental con el prototipo de laboratorio. Actividades complementarias incluyen el análisis de técnicas avanzadas de control sobre el sistema, al igual que la inclusión de términos de no-linealidad en los modelos. | |
dc.description | This paper describes the restructuring of an inverted pendulum prototype in order to re-cover its functional capacity and perform local control to uphold pendulum’s arm upright position. Regarding control, state-feedback control feasibili-ty for the experimental prototype using a low-cost process device was studied. For this, the design and implementation of signal conditioning cir-cuitry for measurement, performance, and control devices was accomplished. An experimental proce-dure was performed to validate the mathematical model proposed for the system, and therefore, the state-feedback controller was designed based on this. State regulation towards zero was obtained on both simulations of the model and the experimental rig when trying to keep the vertical position of the pendulum. Ongoing tasks include the analysis of advanced state-space control techniques and con-siderations regarding nonlinearities in the model of the system | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | INGE CUC; Vol. 10, Núm. 2 (2014) | |
dc.relation | INGE CUC | |
dc.relation | INGE CUC | |
dc.relation | [1] G. Chong, Kiam Heong Ang, and Y. Li, “PID control system analysis, design, and technology”, IEEE Trans. Control Syst. Technol., vol. 13, n° 4, pp. 559-576, July 2005. | |
dc.relation | [2] F. Padula and A. Visioli, “Tuning rules for optimal PID and fractional-order PID controllers”, J. Process Control, vol. 21, n° 1, pp. 69-81, Jan. 2011. | |
dc.relation | [3] J. A. Romero, R. Sanchis, and P. Balaguer, “PI and PID auto-tuning procedure based on simplified single parameter optimization”, J. Process Control, vol. 21, n° 6, pp. 840-851, July 2011. | |
dc.relation | [4] M. U. Draz, M. S. Ali, M. Majeed, U. Ejaz, and U. Izhar, “Segway electric vehicle”, in 2012 International Conference of Robotics and Artificial Intelligence, 2012, pp. 34-39. | |
dc.relation | [5] T. Kuwata, M. Tanaka, M. Wada, T. Umetani, and M. Ito, “Localization of Segway RMP”, in SICE Annual Conference (SICE), 2011, pp. 1675-1680. | |
dc.relation | [6] H.-W. Lee, S.-W. Ryu, and J. Lee, “Optimal posture of Mobile Inverted Pendulum using a single gyroscope and tilt sensor”, in ICCAS-SICE, 2009, pp. 865-870. | |
dc.relation | [7] M. Rohmanuddin, E. M. Budi, and R. Purnama, “Design of horizontal seismic sensor with spherical inverted pendulum and magnetic levitation”, in 2011 2nd International Conference on Instrumentation Control and Automation, 2011, pp. 200-204. | |
dc.relation | [8] J. Yi, N. Yubazaki and K. Hirota, “Upswing and stabilization control of inverted pendulum system based on the SIR Ms dynamically connected fuzzy inference model”, Fuzzy Sets Syst., vol. 122, n° 1, pp. 139-152, Aug. 2001. | |
dc.relation | [9] J.J. Wang, “Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control”, ISA Trans., vol. 51, n° 6, pp. 763-70, Nov. 2012. | |
dc.relation | [10] M. Bettayeb, C. Boussalem, R. Mansouri, and U. M. Al- Saggaf, “Stabilization of an inverted pendulum-cart system by fractional PI-state feedback”, ISA Trans., vol. 53, n° 2, pp. 508-16, March 2014. | |
dc.relation | [11] E. Vinodh Kumar and J. Jerome, “Robust LQR Controller Design for Stabilizing and Trajectory Tracking of Inverted Pendulum”, Procedia Eng., vol. 64, pp. 169-178, Jan. 2013. | |
dc.relation | [12] Z. Li and Y. Zhang, “Robust adaptive motion/force control for wheeled inverted pendulums”, Automatica, vol. 46, n° 8, pp. 1346-1353, Aug. 2010. | |
dc.relation | [13] Quanser®, Automation systems, 2014. [Online]. Available: http://www.quanser.com/ | |
dc.relation | [14] Feedback®, Automation systems, (2014). [Online]. Available: http://www.feedback-instruments.com/ | |
dc.relation | [15] Lab-Volt®, Automation systems, (2014). [Online]. Available: https://www.labvolt.com/ | |
dc.relation | [16] ECP Systems®, Automation systems, (2014). [Online]. Available: http://www.ecpsystems.com/ | |
dc.relation | [17] K. Passino, weLA B: Low-Cost Engineering Laboratoy Project, (2014). [Online]. Available: https://welab.engineering.osu.edu/ | |
dc.relation | [18] O. Ortiz y E. Marin, “Control mediante lógica Fuzzy De un péndulo invertido”, B.Sc. thesis, School of Mech. Eng.Univ. Ind. de Santander, Bucaramanga (Santander), 2005. | |
dc.relation | [19] K. Ogata, Modern Control Engineering, 5th ed. New York: Prentice Hall, 2009, p. 912. | |
dc.relation | [20] L. Herrera, U. Melo, “Control en Espacio de Estados para un Prototipo Real de Péndulo Invertido,” B.Sc. thesis, School of Elect. Eng. Univ. Ind. de Santander, Bucaramanga (Santander), 2013. | |
dc.relation | INGE CUC | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | INGE CUC | |
dc.source | https://revistascientificas.cuc.edu.co/ingecuc/article/view/488 | |
dc.subject | Control local | |
dc.subject | Control por realimentación de estados | |
dc.subject | Microcontrolador arduino | |
dc.subject | Péndulo invertido traslacional | |
dc.subject | Prototipo experimental | |
dc.subject | Arduino microcontroller | |
dc.subject | Experimental rig | |
dc.subject | Local control | |
dc.subject | State-feedback control | |
dc.subject | Translational inverted pendulum | |
dc.title | Control local en el Espacio de Estados para un Prototipo real de Péndulo invertido traslacional | |
dc.title | State-space local control for a real prototype of a translational inverted pendulum | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa |