dc.creatorQuintana, Yamilet
dc.creatorRamírez, William
dc.creatorUrieles Guerrero, Alejandro
dc.date2019-11-13T20:14:06Z
dc.date2019-11-13T20:14:06Z
dc.date2019
dc.date.accessioned2023-10-03T19:50:51Z
dc.date.available2023-10-03T19:50:51Z
dc.identifier2285-3898
dc.identifier1582-3067
dc.identifierhttp://hdl.handle.net/11323/5649
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172610
dc.descriptionThe aim of this paper is to introduce the generalized Apostol-type polynomial matrix W [m−1,α](x;c,a;λ;µ;ν) and the generalized Apos-tol-type matrix W [m−1,α](c,a;λ;µ;ν). Using some properties of the generalized Apostol-type polynomials and numbers, we deduce a product formula for W [m−1,α](x;c,a;λ;µ;ν) and provide some factorizations of the Apostol-type polynomial matrix W [m−1](x;c,a;λ;µ;ν), involving the generalized Pascal matrix, Fibonacci and Lucas matrices, respectively. AMS 2010 Subject Classification: 11B68, 11B83, 11C08, 11B39, 33B99.
dc.formatapplication/pdf
dc.languageeng
dc.publisherMathematical Reports
dc.relation[1] T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli Numbers and Zeta Functions. Springer Monogr. Math., Springer, Tokyo, Heidelberg, New York, Dordrecht and London, 2014. [2] G.S. Call and D.J. Velleman, Pascal’s matrices. Amer. Math. Monthly 100 (1993), 372–376. [3] G.-S. Cheon and J.-S. Kim, Stirling matrix via Pascal matrix. Linear Algebra Appl. 329 (2001), 49–59. [4] G.-S. Cheon and J.-S. Kim, Factorial Stirling matrix and related combinatorial sequences. Linear Algebra Appl. 357 (2002), 247–258. [5] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions. D. Reidel Publishing Co., Dordrecht and Boston, 1974. (Translated from French by J.W. Nienhuys). [6] T. Ernst, A Comprehensive Treatment of q-Calculus. Birkha¨user, Springer, Basel, Heidelberg, New York, Dordrecht and London, 2012. [7] P. Herna´ndez-Llanos, Y. Quintana and A. Urieles, About extensions of generalized Apostoltype polynomials. Results Math. 68 (2015), 203–225. [8] G.I. Infante, J.L. Ram´ırez and A. S¸ahin, Some results on q-analogue of the Bernoulli, Euler and Fibonacci matrices. Math. Rep. (Bucur.) 19 (2017), 4, 399–417. [9] D.S. Kim and T. Kim, Some identities of q-Euler polynomials arising from q-umbral calculus. J. Inequal. Appl. 2014 (2014), Paper No. 1, 12 p. [10] G.-Y. Lee and J.-S. Kim, The linear algebra of the k-Fibonacci matrix. Linear Algebra Appl. 373 (2003), 75–87. [11] G.-Y. Lee, J.-S. Kim and S.-G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices. Fibonacci Quart. 40 (2002), 3, 203–211. [12] G.-Y. Lee, J.-S. Kim and S.-H. Cho, Some combinatorial identities via Fibonacci numbers. Discrete Appl. Math. 130 (2003), 3, 527–534. [13] B. Kurt, Some relationships between the generalized Apostol-Bernoulli and Apostol-Euler polynomials. Turkish J. Anal. Number Theory 1 (2013), 1, 54–58. [14] D.-Q. Lu and Q.-M. Luo, Some properties of the generalized Apostol-type polynomials. Bound. Value Probl. 2013 (2013), Paper No. 64, 13 p. [15] Q.-M. Luo and H.M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 308 (2005), 1, 290–302. [16] Q.-M. Luo and H.M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 51 (2006), 631–642. [17] Q.-M. Luo and H.M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 217 (2011), 5702–5728. [18] H. Ozden, Y. Simsek and H.M. Srivastava, A unified presentation of the generating functions of the generalized Bernolli, Euler and Genocchi polynomials. Comput. Math. Appl. 60 (2010), 2779–2787. [19] Y. Quintana, W. Ram´ırez and A. Urieles, Euler matrices and their algebraic properties revisited. Submitted. arXiv:1811.01455 [math.NT]. [20] Y. Quintana, W. Ram´ırez and A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m. Calcolo 55 (2018), 3, Paper No. 30, 29 p. [21] J. Riordan, Combinatorial Identities. Wiley, New York, London and Sydney, 1968. [22] H.M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions. Springer, Dordrecht, Netherlands, 2001. [23] H.M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, London, 2012. [24] P. Stanimirovi´c, J. Nikolov and I. Stanimirovi´c, A generalization of Fibonacci and Lucas matrices. Discrete Appl. Math. 156 (2008), 14, 2606–2619. [25] W. Wang and T. Wang, Matrices related to the Bell polynomials. Linear Algebra Appl. 422 (2007), 139–154. [26] Z.Z. Zhang, The linear algebra of generalized Pascal matrix. Linear Algebra Appl. 250 (1997), 51–60. [27] Z.Z. Zhang and M.X. Liu, An extension of generalized Pascal matrix and its algebraic properties. Linear Algebra Appl. 271 (1998), 169–177. [28] Z. Zhang and J. Wang, Bernoulli matrix and its algebraic properties. Discrete Appl. Math. 154 (2006), 1622–1632. [29] Z. Zhang and Y. Zhang, The Lucas matrix and some combinatorial identities. Indian J. Pure Appl. Math. 38 (2007), 5, 457–465.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectGeneralized Apostol-type polynomials
dc.subjectGeneralized Apostol-type matrix
dc.subjectAdmissible generalized Apostol-type matrix
dc.subjectGeneralized Pascal matrix
dc.subjectGeneralized Fibonacci matrix
dc.subjectLucas matrix
dc.titleGeneralized apostol-type polynomial matrix and its algebraic properties
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución