Artículo de revista
Recent trends of the most used metaheuristic techniques for distribution network reconfiguration
Registro en:
17919320
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
Autor
Quintero Duran, Michell Josep
Candelo Becerra, John Edwin
Sousa Santos, Vladimir
Institución
Resumen
Distribution network reconfiguration (DNR) continues to be a good option to reduce technical losses in a distribution
power grid. However, this non-linear combinatorial problem is not easy to assess by exact methods when solving for
large distribution networks, which requires large computational times. For solving this type of problem, some researchers
prefer to use metaheuristic techniques due to convergence speed, near-optimal solutions, and simple programming. Some
literature reviews specialize in topics concerning the optimization of power network reconfiguration and try to cover
most techniques. Nevertheless, this does not allow detailing properly the use of each technique, which is important to
identify the trend. The contributions of this paper are three-fold. First, it presents the objective functions and constraints
used in DNR with the most used metaheuristics. Second, it reviews the most important techniques such as particle swarm
optimization (PSO), genetic algorithm (GA), simulated annealing (SA), ant colony optimization (ACO), immune
algorithms (IA), and tabu search (TS). Finally, this paper presents the trend of each technique from 2011 to 2016. This
paper will be useful for researchers interested in knowing the advances of recent approaches in these metaheuristics
applied to DNR in order to continue developing new best algorithms and improving solutions for the topic