Trabalho de Conclusão de Curso
Metamodelos e algoritmos genéticos para a resolução de um problema inverso de eletrofisiologia cardíaca
Metamodels and genetic algorithms for solving an inverse problem in cardiac electrophysiology
Autor
Novaes, Gustavo Montes
Institución
Resumen
The modeling of the electrical activity of cardiac cells has a large medical and scientific interest. The main objective of this work is to avaliate a metodology based in Genetic Algoritms (GA) that aims to automaticaly adjust a celular electrophysiology model to experimetals data. Those inverse problems are, computationally, extremely expensive. Thus, were evaluated two different techniques to accelerate the GA execution: Parallel Computation and Metamodels. The GA were parallelized using a master-slave classic model. A metamodel was implemented whit a purpose is replace the cellular model evaluation by less expensive estimations. This metamodel is dynamically created using an historic of individuals previously evaluated by the cellular model and stored in a database, which was implemented of two forms: an contiguous list and a struct known as Kd-Tree. The GA execution in 20 processors was twice quicker than in 10 processors. Furthermore, the Kd-Tree structure accelerated the functions of search into database in up to 4000 times when compared with the implementation using contiguous list. However, was possible to estimate up to 40% of the individual’s fitness using the metamodel with no quality losses into parameters adjust, what reduced the total execution time of 3 hours (without metamodel) to 2 hours. A modelagem da atividade elétrica de células cardíacas é de grande interesse médico-científico. Este trabalho tem como objetivo avaliar uma metodologia baseada em Algoritmos Genéticos (AG) que visa ajustar automaticamente modelos da eletrofisiologia celular a dados experimentais. Esses problemas inversos são extremamente custosos computacionalmente. Dessa maneira, avaliamos a combinação de duas técnicas para acelerar a execução do AG: Computação Paralela e Metamodelos. O AG foi paralelizado usando o modelo clássico mestre-escravo. Além disto, foi implementado um metamodelo cujo objetivo é substituir a avaliação de indivíduos por estimativas menos custosas. O metamodelo é criado dinamicamente por um histórico de indivíduos já avaliados armazenados em uma base de dados, a qual foi implementada de duas formas: via lista contígua e via Kd-Tree. A execução paralela do AG em 20 processadores foi duas vezes mais rápida do que a execução em 10 processadores. A estrutura Kd-Tree acelerou as funções relacionadas ao armazenamento e busca na base de dados em até 4000 vezes, comparada à implementação via lista contígua. Foi possível estimar as aptidões de até 40% dos indivíduos via meta- modelo sem prejuízo da qualidade do ajuste de parâmetros, o que reduziu o tempo total de execução de 3h (sem metamodelo) para 2h.