dc.creatorSouza, André Maurício Conceição de
dc.creatorTsallis, Constantino
dc.date2013-04-18T22:04:16Z
dc.date2013-04-18T22:04:16Z
dc.date2003-02
dc.date.accessioned2023-09-28T22:43:33Z
dc.date.available2023-09-28T22:43:33Z
dc.identifierSOUZA, A. M. C.; TSALLIS, C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Physical Review E, New York, v. 67, n. 2, fev. 2003. Disponível em: <http://link.aps.org/doi/10.1103/PhysRevE.67.026106>. Acesso em: 18 abr. 2013.
dc.identifier1550-2376
dc.identifierhttps://ri.ufs.br/handle/riufs/475
dc.identifier© 2003 The American Physical Society
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9076376
dc.descriptionThe basic aspects of both Boltzmann-Gibbs (BG) and nonextensive statistical mechanics can be seen through three different stages. First, the proposal of an entropic functional (SBG=-k∑ipilnpi for the BG formalism) with the appropriate constraints (∑ipi=1 and ∑ipiEi=U for the BG canonical ensemble). Second, through optimization, the equilibrium or stationary-state distribution (pi=e-βEi/ZBG with ZBG=∑je-βEj for BG). Third, the connection to thermodynamics (e.g., FBG=-(1/β)lnZBG and UBG=-(∂/∂β)lnZBG). Assuming temperature fluctuations, Beck and Cohen recently proposed a generalized Boltzmann factor B(E)=∫0∞dβf(β)e-βE. This corresponds to the second stage described above. In this paper, we solve the corresponding first stage, i.e., we present an entropic functional and its associated constraints which lead precisely to B(E). We illustrate with all six admissible examples given by Beck and Cohen.
dc.formatapplication/pdf
dc.languageen
dc.publisherAmerican Physical Society
dc.subjectSuperestatística de Beck-Cohen
dc.titleConstructing a statistical mechanics for Beck-Cohen superstatistics
dc.typeArtigo


Este ítem pertenece a la siguiente institución