dc.contributorAlmeida, Marcelo Fernandes de
dc.creatorMelo, Thiago Guimarães
dc.date2023-04-20T17:47:03Z
dc.date2023-04-20T17:47:03Z
dc.date2021-05-12
dc.date.accessioned2023-09-28T22:38:52Z
dc.date.available2023-09-28T22:38:52Z
dc.identifierMELO, Thiago Guimarães. Restrição de Fourier em conjuntos de Salem. 2021. 277 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2021.
dc.identifierhttp://ri.ufs.br/jspui/handle/riufs/17457
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9074366
dc.descriptionIn this work, we show how the s−energy Is(µ) of a Borel measure µ compactly supported is related to the Hausdorff dimension of supp(µ). Using the distributional Fourier transform of the Riesz kernel, we relate Is(µ) to µ^. In this way, we show that Hausdorff dimension and Fourier transforms of measures are closely linked concepts, which is translated into the Fourier dimension. For the construction of examples, we made a study of surface measures. More precisely, we use weak convergence of measures to calculate the Fourier transform of the surface measure in the sphere. In addition, we use the asymptotic behavior of Bessel’s functions to show that it has a rapid decay. More generally, we study oscillatory integrals and apply the results to obtain the decay of the Fourier transform of the intrinsec measure of a compact regular surface with l non-zero principal curvatures. In addition, we use Hausdorff dimension concept to show that the decay of such a measure is optimal. We approach the restriction conjecture in the sphere and use the Knapp Example to get required range. We have dealt with the Stein-Tomas Theorem and obtained it as a consequence of the Littman Theorem. We use the techniques of Carleson-Sjölin to exhibit the proof of the restriction conjecture in the plane. We finish this dissertation by presenting the Mockenhaupt-Mitsis Theorem, which generalizes the Stein-Tomas Theorem, without the end-point. In addition, we present some consequences of the same observed by Mitsis. We briefly deal with the construction of a measure supported on a Salem set, which satisfies the hypotheses of the Mockenhaupt-Mitsis Theorem.
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
dc.descriptionNeste trabalho, mostramos como a s−energia Is(µ) de uma medida de Borel µ com suporte compacto se relaciona com a dimensão de Hausdorff de supp(µ). Por meio da transformada de Fourier distribucional do Núcleo de Riesz, relacionamos Is(µ) com µ^. Com isto, mostramos que dimensão de Hausdorff e transformada de Fourier de medidas são conceitos intimamente ligados, o que é traduzido na dimensão de Fourier. Para a construção de exemplos, fizemos um estudo de medidas de superfícies. Mais precisamente, utilizamos convergência fraca de medidas para calcular a transformada de Fourier da medida de superfície na esfera. Além disso, utilizamos o comportamento assintótico das funções de Bessel para mostrar que tal tem um decaimento rápido. Mais geralmente, estudamos integrais oscilatórias e aplicamos os resultados para obter o decaimento da transformada de Fourier da medida intrínseca a uma superfície regular compacta com um número l de curvaturas principais não nulas. Além disso, usamos o conceito de dimensão de Hausdorff para mostrar que o decaimento de tal medida é ótimo. Abordamos a conjectura da restrição na esfera e usamos o Exemplo de Knapp para chegar ao range necessário. Tratamos do Teorema de Stein-Tomas e obtivemos o mesmo como consequência do Teorema de Littman. Usamos as técnicas de Carleson-Sjölin para exibir a prova da conjectura da restrição no plano. Finalizamos esta dissertação apresentando o Teorema de Mockenhaupt-Mitsis, o qual generaliza o Teorema de Stein-Tomas, sem o end-point. Além disso, apresentamos algumas consequências do mesmo observadas por Mitsis. Brevemente versamos sobre a construção de uma medida suportada num conjunto de Salem, a qual satisfaz as hipóteses do Teorema de Mockenhaupt-Mitsis.
dc.descriptionSão Cristóvão
dc.formatapplication/pdf
dc.languagepor
dc.publisherPós-Graduação em Matemática
dc.publisherUniversidade Federal de Sergipe
dc.subjectMatemática
dc.subjectTransformadas de Fourier
dc.subjectSequências (matemática)
dc.subjectRestrição de Fourier
dc.subjectDimensão de Hausdorff
dc.subjectS-energia de medidas
dc.subjectDimensão de Fourier
dc.subjectConjuntos de Salem
dc.subjectFourier restriction
dc.subjectHausdorff dimension
dc.subjectS-energy of measures
dc.subjectFourier dimension
dc.subjectSalem sets
dc.subjectCIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.titleRestrição de Fourier em conjuntos de Salem
dc.typeDissertação


Este ítem pertenece a la siguiente institución