Artigo
Absence of a spontaneous long-range order in a mixed spin-(1/2, 3/2) Ising model on a decorated square lattice due to anomalous spin frustration driven by a magnetoelastic coupling
Registro en:
STRECKA, J.; ROJAS, O.; SOUZA, S. M. de. Absence of a spontaneous long-range order in a mixed spin-(1/2, 3/2) Ising model on a decorated square lattice due to anomalous spin frustration driven by a magnetoelastic coupling. Statistical Mechanics, [S.l.], 4 Apr. 2019. DOI: 10.1016/j.physleta.2019.05.017.
Autor
Strecka, Jozef
Rojas, Onofre
Souza, Sergio Martins de
Institución
Resumen
The mixed spin-(1/2, 3/2) Ising model on a decorated square lattice, which takes into account lattice vibrations of the spin-3/2 decorating magnetic ions at a quantum-mechanical level under the assumption of a perfect lattice rigidity of the spin-1/2 nodal magnetic ions, is examined via an exact mapping correspondence with the effective spin-1/2 Ising model on a square lattice. Although the considered magnetic structure is in principle unfrustrated due to bipartite nature of a decorated square lattice, the model under investigation may display anomalous spin frustration driven by a magnetoelastic coupling. It turns out that the magnetoelastic coupling is a primary cause for existence of the frustrated antiferromagnetic phases, which exhibit a peculiar coexistence of antiferromagnetic long-range order of the nodal spins with a partial disorder of the decorating spins with possible reentrant critical behaviour. Under certain conditions, the anomalous spin frustration caused by the magnetoelastic coupling is responsible for unprecedented absence of spontaneous long-range order in the mixed-spin Ising model composed from half-odd-integer spins only.