Resumo de eventos cient??ficos
FTIR imaging on glass substrates evaluation of histological skin burn injuries specimens treated by femtosecond laser pulses
Registro en:
0000-0003-1371-7521
0000-0001-7762-8961
0000-0001-7404-9606
Autor
ZEZELL, DENISE
CASTRO, PEDRO
DEL-VALLE, MATHEUS
CAMILLO-SILVA, CARLOS
SAMAD, RICARDO
DE ROSSI, WAGNER
SANTOS, MOISES
INTERNATIONAL CONFERENCE ON LASER APPLICATIONS IN LIFE SCIENCES, 16th
Resumen
Burn injuries continue to be one of the leading causes of unintentional death and injury in low- and middle-income countries [1]. Burns are considered an important public health problem, because in addition to physical problems that can lead the patient to death, they cause psychological and social damage. An estimated 180,000 deaths every year are caused by burns [2]. The use of infrared (IR) spectroscopy for studying biological specimens is nowadays a wide and active area of research. The IR microspectroscopy has proved to be an ideal tool for investigating the biochemical composition of biological samples at the microscopic scale, as well as its fast, sensitive, and label-free nature [3]. IR image spectral histopathology has shown great promise as an important diagnostic tool, with the potential to complement current pathological methods, reducing subjectivity in biopsy samples analysis. However, the use of IR transmissive substrates which are both fragile and prohibitively very expensive, hinder the clinical translation. The goal of this study is to evaluate the potential of discriminating healing process, in burned skin specimens treated with ultrashort pulses laser 3 days after the burn. This study is considering a previous paper [4], in which it analyzed only micro-ATR-FTIR spectra of a frozen sample point. The specimens were obtained from third degree burn wound. The wounds treatment were performed three days after the burn, and the animals were sacrificed 3 and 14 days post-treatment. Using coverslipped H&E stained tissue on glass from previous histopathological analysis and applying the analytical techniques PCA and K-means on N???H, O???H, and C???H stretching regions occurring at 2500???3800 cm???1 (high wavenumber region), were possible to discriminate burned epidermal and dermal regions from irradiated in same regions on sample. In the figures is shown the average spectrum at (a) day 3 and (b) day 14. , in both there were increase of burned+laser treated bands. The great potential of this study was to analyse coverslipped H&E stained tissue on glass, without compromising the histopathologist practices and contribute for clinical translation. Funda????o de Amparo ?? Pesquisa do Estado de S??o Paulo (FAPESP) Coordena????o de Aperfei??oamento de Pessoal de N??vel Superior (CAPES) Conselho Nacional de Desenvolvimento Cient??fico e Tecnol??gico (CNPq) FAPESP: 05/51689-2; 17/50332-0 CAPES: PROCAD 88881.068505/2014-01 CNPq: INCT-465763/2014-6; PQ-309902/2017-7