Texto completo de evento
Feasibility to convert an advanced PWR from UO2 to a mixed (U,Th)O2 core
Autor
STEFANI, GIOVANNI L. de
MAIORINO, JOSE R.
MOREIRA, JOAO M. de L.
SANTOS, THIAGO A. dos
ROSSI, PEDRO C.R.
INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
Resumen
This work presents the neutronics and thermal hydraulics feasibility to convert the UO2 core of the Westinghouse AP1000 in a (U-Th)O2 core, rather than the traditional uranium dioxide, for the purpose of reducing long-lived actinides, especially plutonium, and generates a stock pile of 233U, which could in the future be used in advanced fuel cycles, in a more sustainable process and taking advantage of the large stock of thorium available on the planet and especially in Brazil. The reactor chosen as reference was the AP1000, which is considered to be one of the most reliable and modern reactor of the current Generation III, and its similarity to the reactors already consolidated and used in Brazil for electric power generation. The results show the feasibility and potentiality of the concept, without the necessity of changes in the core of the AP1000, and even with advantages over this. The neutron calculations were made by the SERPENT code. The results provided a maximum linear power density lower than the AP1000, favoring safety. In addition, the delayed neutron fraction and the reactivity coefficients proved to be adequate to ensure the safety of the concept. The results show that a production of about 260 Kg of 233U per cycle is possible, with a minimum production of fissile plutonium that favors the use of the concept in U-Th cycles.