Tese
Purificação, caracterização bioquímica e aplicações biotecnológicas de α-galactosidases de Aspergillus terreus
Purification, biochemical caracterization and biotechnological uses of α-galactosidases from Aspergillus terreus
Registro en:
REIS, Angélica Pataro. Purification, biochemical caracterization and biotechnological uses of α-galactosidases from Aspergillus terreus. 2007. 124 f. Tese (Doutorado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2007.
Autor
Reis, Angélica Pataro
Institución
Resumen
A enzima α-Galactosidase (α-D-galactosideo galactohidrolase, EC 3.2.1.22) catalisa a clivagem de resíduos terminais α-1,6- galactosil presentes em vários substratos, incluindo oligossacarídeos lineares e ramificados, polissacarídeos e substratos sintéticos tal como o p-nitrofenil-α-D- galactopiranosídeo (ρNPαGal). A α-galactosidase é de grande importância devido seu potencial em aplicações industriais. Dentre estas a capacidade em hidrolisar os oligossacarídeos de rafinose (RO) que são os principais fatores responsáveis por distúrbios gastrintestinais relacionados com a ingestão de produtos derivados de soja. A mucosa intestinal de humanos e animais monogástricos não possui a enzima α-galactosidase, essencial para a hidrólise desses oligossacarídeos. Portanto a redução desses açúcares nos derivados de soja poderá melhorar as qualidades nutricionais desses alimentos. O objetivo deste trabalho foi produzir, purificar e caracterizar α- galactosidases de Aspergillus terreus, avaliando sua capacidade hidrolítica sobre os oligossacarídeos de rafinose (RO) presentes em produtos de soja. O fungo Aspergillus terreus cresceu em meio mineral líquido contendo farelo de trigo como fonte de carbono por 168 horas a 28 °C. Para obtenção da α-galactosidase purificada E1 e parcialmente purificada E2, foram utilizadas cromatografias de gel filtração, interação hidrofóbica, troca iônica e afinidade. Foi também utilizado gel nativo como última etapa de purificação da
α-galactosidase E1. Atividades máximas das α-galactosidases E1 e E2 foram detectadas em pH 5,0 e 5,5 e nas temperaturas de 60 e 50 oC, respectivamente. A enzima
α-galactosidase E1 manteve 90% de sua atividade inicial quando pré-incubada por 12 horas a 55 °C e a
α-galactosidase E2 manteve apenas 5 % da sua atividade quando pré-incubada nas mesmas condições. Os valores da KM para ρNPαGal, melibiose, estaquiose e rafinose para a
α-galactosidase E1 foram de 0,66, 1,92, 10,94 e 27,93 mM, respectivamente, enquanto que, para a α-galactosidase E2 o KM para ρNPαGal e melibiose foram de 0,20 e 20,14 mM, respectivamente. As α-galactosidases apresentaram especificidade para galactose em posição α, hidrolisando o substrato sintético ρNPαGal, estaquiose, rafinose e melibiose. Sulfato de cobre, cloreto de mercúrio, nitrato de prata e SDS inativaram totalmentes as duas enzimas, enquanto que sulfato de zinco inativou totalmente a α-galactosidase E1 e reduziu 48 % a atividade da α-galactosidase E2. A
α-galactosidase E2 na presença do substrato ρNPαGal sofreu inibição competitiva com galactose (Ki 0,76 mM). Para o substrato ρNPαGal foi encontrada uma energia de ativação igual a 51,17 e 36,71 kJ/mol para as α-galactosidases E1 e E2, respectivamente. Para o substrato melibiose a energia de ativação para a α-galactosidase E1 foi de 53,83 kJ/mol e para a E2 foi 39,83 kJ/mol. Para os substratos rafinose e estaquiose, a energia de ativação encontrada foi de 55,18 e 42,81 kJ/mol, respectivamente, para a α-galactosidase E1. Os resultados dos tratamentos do extrato desengordurado de soja com as α-galactosidases E1 e E2 mostraram uma redução de 100% da estaquiose após 12 horas de incubação, porém a rafinose ainda permaneceu 24 % a mais que o teor inicial, fenômeno que pode ser justificado pelo fato deste açúcar ser um dos produtos da hidrólise da estaquiose havendo então um acúmulo de rafinose. Para a α-galactosidase E2, ao final de 12 horas de incubação com o extrato desengordurado, 18 e 25 % dos açúcares rafinose e estaquiose foram hidrolisados, respectivamente. Portanto, observa-se que preferencialmente a α-galactosidase E1 pode ser utilizada para redução dos RO, sendo indicada para utilização industrial no processamento destes açúcares. The enzyme α-galactosidase (α-D-galactoside galactohydrolase, EC 3.2.1.22) catalyzes the cleavage of
α-1,6-galactosyl terminal residues present in different substrates, including linear and branching oligosaccharides, polysaccharides and synthetic substrates such as p-hitrophenyl-α-1,6-galactosyl -D- galactopyranoside (ρNPαGal). The α-galactosidase is very important because of its potential industrial uses. Among these uses, it stands out the capacity to hydrolyze raffinose oligosaccharides (RO), which are the main responsible factors for gastrointestinal disorders related with the ingestion of soybean-derived products. The intestinal mucous membrane of humans and monogastric animals lacks the α-galactosidase enzyme, which is essential for the hydrolysis of these oligosaccharides. The reduction of these soybeanderived sugars can therefore improve the nutritional quality of these foods. The objective of this work was to produce, purify and characterize α-galactosidases from Aspergillus terreus, evaluating its hydrolytic capacity on raffinose oligosaccharides (RO) found in soybean products. The fungus Aspergillus terreus grew in mineral liquid medium containing wheat bran as carbon source for 168 hours at 28° C. Gel-filtration, hydrophobic interaction, ion exchange and affinity chromatographies were used to obtain purified α-galactosidase E1 and partially purified E2. Native gel was also used as the last stage of α-galactosidase E1 purification. Maximum activities of α-galactosidases E1 and E2 were detected at pH 5 and 5.5 and at the temperatures 60 and 50 oC, respectively. Enzyme α-galactosidase E1 maintained 90% of its initial activity when pre-incubated for 12 hours at 55 °C, whereas α-galactosidase E2 maintained only 5% of its activity when pre-incubated in the same conditions. KM values for ρNPαGal, mellibiose, stachyose and raffinose for α-galactosidase E1 were 0.66, 1.92, 10.94 and 27.93 mM, respectively, whereas for α- galactosidase E2 the KM for ρNPαGal and mellibiose was 0.20 and 20.14 mM, respectively. The α-galactosidases showed specificity for galactose at α position, hydrolyzing synthetic ρNPαGal substrate, mellibiose, stachyose and raffinose. Copper sulfate, mercury chloride, silver nitrate and SDS totally inactivated the two enzymes, whereas zinc sulfate totally inactivated α-galactosidase E1 and reduced α-galactosidase E2 activity by 48%. The α-galactosidase E2 in the presence of ρNPαGal substrate underwent competitive inhibition by galactose (Ki 0.76 mM). Activation energy of ρNPαGal substrate was found to be 51.17 and 36.71 kJ/mol for α-galactosidases E1 and E2, respectively. The mellibiose substrate had activation energy for α- galactosidase E1 and E2 of 53.83 and 39.83 kJ/mol respectively. Substrates raffinose and stachyose had activation energy of 55.18 and 42.81 kJ/mol respectively, for α-galactosidase E1. The treatments of defatted soybean extract with α-galactosidases E1 and E2 resulted in 100% reduction in stachyose after 12 hours of incubation, however raffinose still remained 24% higher than the initial level, which can be explained by the fact that this sugar is one of the products of stachyose hydrolysis, causing therefore its accumulation. After 12 hours of incubation of α-galactosidase E2 with the defatted extract, 18 and 25% of raffinose and stachyose were hydrolyzed, respectively. Therefore, it can be concluded that α- galactosidase E1 can be preferably used to reduce RO, being indicated for the industrial processing of these sugars. Universidade Federal dos Vales do Jequitinhonha e Mucuri