Artigo
Small-scale patch dynamics after disturbance in litter ant communities
Autor
Campos, Renata Bernardes Faria
Schoereder, José Henrique
Sperber, Carlos F.
Institución
Resumen
The dynamics of re-colonisation of disturbed patches may aid in the understanding of spatial variation of species richness. The present study experimentally tested the hypothesis that the variation of litter ant local species richness and composition is caused by the dynamics of re-colonisation after disturbances. We were particularly interested in whether the re-colonisation was by pre-existent species or species new to the patches, and whether the succession of species evidences the existence of dominance-controlled or founder-controlled communities. Litter patches of a forest remnant in Southeast Brazil were disturbed by removing most animals through litter drying, and litter samples were returned to the same sites from where they were removed. Ant species richness and composition were compared before and 2 months after the disturbance. Dissimilarity among disturbed and non-disturbed samples was compared to infer the succession model occurring after disturbance. Ant species richness did not recover after 2 months, and species composition of the disturbed samples showed more new colonisers than pre-existent species. Dissimilarity among samples in the disturbed plots was smaller than in the control plots, indicating a directional, or dominance-controlled, succession. The changes in species composition observed were caused by a decrease of some species, particularly predators, and an increase of species that are possibly opportunistic. Patches of litter are naturally disturbed in time and space, and evidence from the present paper indicates that succession occurring in these patches would lead to different species richness and compositions. Thus the dynamics of re-colonisation contributes to explaining the diversity of litter-dwelling ant communities at larger spatial and temporal scales. In each patch the succession seems to be directional, with opportunist species re-colonising preferentially empty plots. Therefore, these communities may attain a high diversity due to a small-scale patch dynamics model.