Tese
Papel das enzimas oxidativas na deterioração fisiológica de mandioca
Role of oxidative enzymes on physiological deterioration of cassava
Registro en:
RAMOS, Paula Acácia Silva. Role of oxidative enzymes on physiological deterioration of cassava. 2011. 100 f. Tese (Doutorado em Plantas daninhas, Alelopatia, Herbicidas e Resíduos; Fisiologia de culturas; Manejo pós-colheita de) - Universidade Federal de Viçosa, Viçosa, 2011.
Autor
Ramos, Paula Acácia Silva
Institución
Resumen
A alta perecibilidade das raízes de mandioca (Manihot esculenta, Crantz) in natura faz com que as mesmas tenham que ser consumidas dentro de um período muito curto após a colheita. A principal causa deve-se a deterioração fisiológica, caracterizada por estrias azuladas e pigmentos escuros na polpa que progride ao longo dos parênquimas, atribuído a reações das enzimas peroxidase E.C. 1.11.1.7. (POD) e Polifenoloxidase E.C. 1.10.3.1. (PPO). Este trabalho foi realizado com objetivos de purificar parcialmente e caracterizar cineticamente essas enzimas, avaliando condições ótimas de suas atividades, e verificar o efeito de diferentes inibidores da atividade da POD como tratamento pós-colheita, visando reduzir o escurecimento enzimático. As raízes utilizadas para purificação cinética foram cortadas para induzir a atividade da POD e PPO. A cinética da atividade foi determinada em condições de pHs variando de 2,5 a 9,0 em condições de ambiente (25 ºC) e gelo (4 ºC), e diferentes temperaturas. A POD e PPO extraídas de raízes de mandioca foram parcialmente purificadas por fracionamento em sulfato de amônio de 0 a 80% e diálise, com intervalos de 20%. Foram testados diferentes substratos da PPO: ácido caféico, ácido clorogênico, ácido p-cumárico, catecol, 4-metil-catecol, DLdopa, pirogalol à concentração de 15 mM. Para avaliar diferentes inibidores da POD, raízes inteiras e isentas de danos foram tratadas por uma hora em soluções contendo produtos como o ácido ascórbico, azida sódica, bissulfito de sódio, Na2EDTA, L-cisteína e SDS nas concentrações de 1, 5 e 10 mM, e deixadas à temperatura ambiente por seis dias. A cada dois dias foi realizada análise visual e retiradas amostras de 2 cm de espessura para avaliar a atividade enzimática. A otimização do ensaio enzimático para a POD e PPO de raízes de mandioca in natura foi conseguida quando os extratos foram saturados de 60-80% e a reação processou-se em pHs 6,0 e 6,5, em temperaturas de 40 ºC e 30 ºC, respectivamente, sendo o substrato de maior afinidade com a PPO o ácido clorogênico. A inativação completa da POD e PPO ocorreram em pH 2,5 a temperatura ambiente (25 ºC) após 60 minutos e 30 minutos respectivamente. Em pH 9,0 não houve inativação total da atividade das enzimas POD e PPO. Portanto, a atividade da peroxidase não foi inativada em pH alcalino, sendo menos estável em pH ácido, que mostrou ser efetivo na redução da atividade enzimática, causando danos rápidos ao sítio ativo. Nos extratos da POD pré-incubados a 50 ºC e 60 ºC tiveram redução na atividade de 30,7% aos 70 minutos, e 40,7% aos 60 minutos sem inativação total. Em temperaturas mais elevadas (70 e 80 ºC) não foi constatada inativação total da atividade. Nos extratos pré-incubados da polifenoloxidase a 50 ºC, 60 ºC e 70 ºC durante o período de 10 min resultaram em inativação parcial de 60%, 77% e 81,7%, respectivamente, sem inativação total por mais tempo de préincubação (180 minutos). Houve inativação total com 80 ºC aos 50 minutos. Houve relação entre atividade da peroxidase e o escurecimento, todos tratamentos foram eficientes em aumentar a vida de prateleira das raízes de mandioca in natura em até 4 dias. No segundo dia houve 100% de raízes sem escurecimento, em relação ao controle, nas três concentrações. O pH ácido mostrou ser mais eficiente em reduzir a atividade enzimática da POD e PPO, mostrando que o tratamento com pré-incubação em pHs ácidos são eficazes em reduzir a atividade destas enzimas. E tratamentos com temperaturas de 80 ºC por um período superior a 50 minutos, também mostrou ser eficiente em reduzir a atividade enzimática da PPO. Foi possível aumentar a vida de prateleira de raízes de mandioca tratadas com ácido ascórbico, bissulfito de sódio e L-cisteína. O escurecimento das raízes de mandioca in natura foi reduzido, aplicando-se diferentes inibidores nas concentrações de 1mM, 5 mM ou 10mM. The high perishability of cassava roots (Manihot esculenta Crantz) in nature make them to be consumed within a very short period after harvest. The main cause of loss is due to physiological deterioration, characterized by bluish streaks and dark pigments in the pulp, which progresses through the parenchyma. These changes are attributed to the action of peroxidase EC 1.11.1.7. (POD) and polyphenoloxidase E.C. 1.10.3.1. (PPO). This work was conducted in order to partially purify and characterize these enzymes kinetically, evaluating optimal conditions for their activities, and to determine the effect of different inhibitors on the activity of POD in order to reduce the enzymatic browning. The roots used for purification were cut to induce the activity of POD and PPO. The kinetic activity was determined under conditions of pH ranging from 2.5 to 9.0 at room temperature (25 oC) and ice (4 oC), and different temperatures. The POD and PPO extracted from cassava roots were partially purified by ammonium sulfate fractionation from 0 to 80% at intervals of 20%, followed by dialysis. We tested the following PPO substrates: caffeic acid, chlorogenic acid, p-coumaric acid, catechol, 4-methyl-catechol, DL-dopa, pyrogallol at a concentration of 15 mM. To evaluate the effect of different POD inhibitors, whole roots and free of damage were treated for one hour in solutions containing products such as ascorbic acid, sodium azide, sodium bisulfite, Na2EDTA, L-cysteine and SDS concentrations of 1, 5 and 10 mM and left at room temperature for six days. At every two days it was performed visual analysis and removed samples of 2 cm thick to evaluate the enzyme activity. Optimization of the enzymatic assay for POD and PPO of fresh cassava roots was achieved when the extracts were saturated with 60-80% and the reaction proceeded at pH 6.0 and 6.5, at temperatures of 40 ºC and 30 oC, respectively containing the higher affinity PPO substrate, chlorogenic acid. The complete inactivation ofPOD and PPO occurred at pH 2.5 at room temperature (25 oC) after 60 minutes and 30 minutes respectively. At pH 9.0 there was total inactivation of POD and PPO activities. The POD activity was not inactivated at alkaline pH, being less stable at acid pH, which proved to be effective in reducing enzyme activity, causing rapid damage to the active site. In the POD extracts, pre-incubated at 50 and 60 oC, had a reduction in activity of 30,7% at 70 minutes, and 40.7% at 60 minutes without total inactivation. At higher temperatures (70 and 80 oC) were not observed total inactivation of the enzyme. In extracts pre-incubated to PPO at 50, 60 and 70 ºC for 10 min resulted in partial inactivation of 60, 77 and 81.7%, respectively, without total inactivation in longer pre-incubation (180 minutes). There was total inactivation at 80 oC for 50 minutes. There was a relationship between peroxidase activity and browning, and all treatments were effective in increasing the shelf life of fresh cassava roots up to 4 days. On the second day there was 100% of root browning, in the control. The acidic pH was more effective in reducing the enzymatic activity of POD and PPO, showing that treatment with pre-incubation in acidic pHs are effective in reducing the activity of these enzymes. Treatment with temperatures of 80 oC for a period longer than 50 minutes, also proved to be effective in reducing the enzymatic activity of PPO. It was possible to increase the shelf life of cassava roots by treating with ascorbic acid, sodium bisulfite and L-cysteine. The browning of fresh cassava roots was reduced by applying different concentrations of the above inhibitors at concentrations of 1 mM, 5 mM or 10 mM. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior