Tese
Localization phenomena and limits of mean-field theories in epidemic processes on networks
Fenômenos de localização e limites de teorias de campo médio para processos epidêmicos em redes
Registration in:
SILVA, Diogo Henrique da. Localization phenomena and limits of mean-field theories in epidemic processes on networks. 2020. 143 f. Tese (Doutorado em Física Aplicada) - Universidade Federal de Viçosa, Viçosa. 2020.
Author
Silva, Diogo Henrique da
Institutions
Abstract
Complex networks have been applied to represent many real systems and investiga- tions of dynamical processes on their top are of interest, in particular, the epidemic model susceptible-infected-susceptible (SIS). In this model, theoretical descriptions of the transition from a disease-free to an endemic phase at the epidemic threshold are usually performed by means of mean-field theories. The quenched mean-field theory (QMF) takes into account the network structure regarding dynamical corre- lations. The dynamical correlations are added to QMF theory in a pairwise level in the pair-quenched mean-field theory (PQMF). We verify that, as in the QMF case, the PQMF theory can be described by the spectral properties of a Jacobian matrix which emerges within this theory. The absence of degree correlations, which allows to simplify these theories, has been considered in many studies. We analyze the effects of degree correlations on the performance of mean-field theories in determining the epidemic threshold and prevalence of the SIS model on real and synthetic networks. We investigate if there is a relation between this performance and structural and spectral properties of the network and matrices associated with the respective theories. Usually, localization in dynamical processes is investigated through eigenvectors of matrices associated to theoretical approaches near to the transition. We study this problem introducing a normalized activity vector determined by the nodal activities. We construct basis for interpreting the localization inherent to epidemic processes at the threshold and the onset of a delocalized endemic phase just above it. The method is generic and applicable to theories, stochastic simulations, real data and any network. Keywords: Complex networks. Spreading dynamics. Mean-field theories. Sistemas reais podem ser representados em redes complexas e é de interesse investigar processos dinâmicos nessas redes, dentre os quais destacamos o modelo epidêmico suscetível-infectado-suscetível (SIS). Nesse modelo, as descrições teóricas da transição de um estado livre de doença para um endêmico a uma dada taxa de infecção, chamada de limiar epidêmico, são comumente realizadas a partir das teorias de campo médio. Destacamos a teoria QMF do inglês quenched mean-field, que considera toda a estrutura da rede desprezando as correlações dinâmicas, e a teoria PQMF do inglês pair-quenched mean-field, que adiciona correlações dinâmicas à teoria QMF em um nível de pares. Verificamos que, assim como na teoria QMF, a teoria PQMF pode ser descrita pelas propriedades espectrais de uma matriz Jacobiana associada à ela. Em geral, essas teorias são estudadas na ausência de correlação de grau permitindo simplificações. Analisamos os efeitos da correlação de grau, tanto em redes sintéticas quanto em redes reais, na precisão das teorias de campo médio em prever o limiar epidêmico e a prevalência epidêmica. Além disso, verificamos se há relação da precisão das teorias com as propriedades estruturais das redes e espectrais das matrizes associadas às teorias. A localização em espalhamentos dinâmicos é usualmente estudada explorando propriedades espectrais de matrizes associadas a descrições teóricas próximas a transição. Analisamos a localização a partir do vetor de atividade normalizado definido em termos da atividade dos nós da rede. Construímos bases para interpretação da localização inerente aos processos epidêmicos no limiar e em uma fase endêmica não localizada logo acima dele. O método é aplicável as simulações estocásticas, teorias, dados reais e redes distintas. Palavras-chave: Redes complexas. Dinâmica de espalhamento. Campo médio.