Dissertação
Adsorção e dessorção de arsênio(V) pelo compósito magnético hidrotalcita-ferro e seu emprego na remoção deste elemento de águas da região do Quadrilátero Ferrífero, Minas Gerais
Adsorption and desorption of arsenic(V) by the magnetic hydrotalcite-iron composite and its employment in the removal of this element from water in the Iron Quadrangle region, Minas Gerais
Registration in:
TOLEDO, Thiago Vinícius. Adsorption and desorption of arsenic(V) by the magnetic
hydrotalcite-iron composite and its employment in the removal of this element from water in the Iron Quadrangle region, Minas Gerais. 2010. 104 f. Dissertação (Mestrado em Agroquímica analítica; Agroquímica inorgânica e Físico-química; Agroquímica orgânica) - Universidade Federal de Viçosa, Viçosa, 2010.
Author
Toledo, Thiago Vinícius
Institutions
Abstract
No presente trabalho a hidrotalcita teve as suas propriedades de adsorção e troca aniônica combinadas com as propriedades magnéticas do óxido de ferro para produzir um adsorvente magnético (HT-Fe). Este adsorvente teve o seu potencial de atuação avaliado na remoção de espécies de As(V) de soluções aquosas. As condições ótimas de adsorção foram
determinadas e as concentrações de arsênio, para todos os casos, foram obtidas por Espectrometria de Absorção Atômica utilizando um gerador de hidretos (EAA-GH). Posteriormente, o compósito magnético HT-Fe foi submetido à calcinação com o objetivo de intensificar suas propriedades de adsorção e troca aniônica por meio do aumento da área superficial, da
porosidade e também do efeito memória . Este adsorvente calcinado a 500 °C (HT-Fe 500) também teve o seu potencial de atuação avaliado na remoção de espécies de As(V) em águas. Tanto para o HT-Fe quanto para HT-Fe 500 o
modelo cinético que melhor explica o processo de remoção do adsorvato, com R2 > 0,961 para o HT-Fe e R2 > 0,981 para o HT-Fe 500, foi o de pseudo segunda ordem, sugerindo que a quimissorção atua como etapa determinante no mecanismo de adsorção. A constante relacionada à velocidade de adsorção
de pseudo segunda ordem mostrou-se dependente da concentração inicial do adsorvato e de comportamento inversamente proporcional, atingindo, no caso do HT-Fe, valor de 0,441 g mg-1 h-1 para 1,0 mg L-1 de As(V) e 3,09 x 10-3 g mg-1 h-1 quando a concentração inicial de As(V) era de 160,0 mg L-1; já para o HTFe 500 o valor obtido foi de 2,173 g mg-1 h-1 para 1,0 mg L-1 de As(V) e 0,0114 g mg-1 h-1 para a concentração inicial de As(V) igual a 160,0 mg L-1. No equilíbrio o modelo de isoterma que melhor explica o processo de adsorção, para ambos os adsorventes, é o proposto por Langmuir, indicando que o adsorvente possui um número definido de sítios ativos idênticos, onde cada um retém apenas uma molécula do adsorvato, que a energia de adsorção não depende da quantidade de material adsorvido e que as espécies adsorvidas não reagem com o meio e nem entre si, sendo a adsorção restrita a uma monocamada. Observou-se que a capacidade de adsorção máxima de As(V) estimada por este modelo para o HT-Fe 500 é 31,81 mg g-1. Esta capacidade é 3,12 vezes superior à apresentada pelo HT-Fe (10,19 mg g-1) para o mesmo valor de pH (7,0) e com uma dosagem em solução 2,5 vezes maior que a utilizada para o HT-Fe 500. Em valores de pH iguais a 4,0 e 9,0, o HT-Fe
apresentou ainda capacidades máximas de adsorção iguais a 24,09 e 10,19 mg g-1, respectivamente. O adsorvente HT-Fe é facilmente recuperado por dessorção, sendo o melhor resultado obtido quando utilizado como dessorvente uma solução de NaOH 20% m/v, que dessorveu 81,7% da massa
do adsorvato impregnada em 100,0 mg do compósito HT-Fe. Para o dessorvente NaOH 3% (m/v) + NaCl 5% (m/v) não houve nenhuma alteração da estrutura original do adsorvente e obteve-se 53,8% de dessorção da massa do adsorvato impregnada em 100,0 mg do mesmo. Para o HT-Fe 500 os
melhores resultados obtidos na dessorção também foram para a solução de NaOH 20% (m/v) e para as soluções resultantes da combinação entre NaOH e NaCl, onde se constatou novamente que a massa dessorvida aumenta significativamente do primeiro para o segundo ciclo de dessorção. O potencial de atuação de ambos adsorventes, calcinado e não calcinado, também foi testado diante de amostras de águas naturais contaminadas por arsênio coletadas na região do Quadrilátero Ferrífero, MG. Os resultados das análises em água mostraram concentrações de As total variando entre 2,82 e 195,9 μg L-1, evidenciando que em algumas amostras as quantidades estão muito superiores ao limite máximo recomendado pelos órgãos brasileiros de
monitoramento de águas destinadas ao consumo humano, que é de 10,0 μgL-1. Com isso, os níveis de remoção de As atingiram 92,75% com o compósito HTFe e 95,33 % com o HT-Fe 500 para a amostra real mais concentrada. In the present study, adsorption and ion exchange properties of hydrotalcite were combined with the magnetic properties of iron oxide to produce a magnetic adsorbent (HT-Fe). Its adsorbent potential was evaluated for removal of As(V) species from aquatic solutions. Optimal adsorption conditions were determined and the arsenic concentrations, in all cases, were obtained by hydride generation - atomic absorption spectrometry (HG-AAS). Later, the HT-Fe magnetic compound was submitted to calcinations with the objective of intensifying its adsorption and anionic exchange properties by mean of increasing the surface areas, porosity and also the memory effect . This calcined adsorbent at 500 °C (HT-Fe 500) also had its potential evaluated for removal of As(V) species from water. For both the HT-Fe and HT-Fe 500, the kinetic model which best explained the adsorption removal process, with R2 > 0.961 for HT-Fe and R2 > 0.981 for HT-Fe 500, was of pseudo second order suggesting that chemisorption is the determining stage in the adsorption
mechanism. The constant related to adsorption velocity of pseudo second order showed to be dependent on the initial concentration of the adsorbate and of proportionally inverse behavior, reaching, in the case of HT-Fe, a value of 0.441
g mg-1 h-1 for 1.0 mg L-1 of As(V) and 3.09 x 10-3 g mg-1 h-1 when the initial concentration of As(V) was 160.0 mg L-1; however for HT-Fe 500 the obtained value was 2.173 g mg-1 h-1 for 1.0 mg L-1 of As(V) and 0.0114 g mg-1 h-1 for an
initial As(V) concentration equal to 160.0 mg L-1. At equilibrium the isotherm model that best explained the adsorption process, for both adsorbents, was that proposed by Langmuir, indicating the adsorbent possessed a defined number of identified active sites where each retains only one adsorbate molecule; also, the adsorption energy is not dependent on the quantity of material adsorbed and the adsorbed species do not react with the medium or among themselves, being that adsorption is restricted to a monolayer. It was observed that the maximum As(V) adsorption capacity estimated in this model for HT-Fe 500 is 31.81 mg g-1. This capacity is 3.12 times greater than that presented by HT-Fe (10.19 mg g-1) for the same pH (7.0) and with a solution 2.5 times more concentrated than that used for HT-Fe 500. At pH values of 4.0 and 9.0, the HTFe presented maximal adsorption capacities of 24.09 and 10.19 mg g-1, respectively. The HT-Fe adsorbent is easily recovered by desorption where the best result was obtained when using a desorbing solution containing NaOH 20% w/v, which desorbed 81.7% of the adsorbate mass impregnated in 100.0 mg of the HT-Fe composite. Yet for the NaOH 3% (w/v) + NaCl 5% (w/v) there was no alteration in the original structure of adsorbent and 53.8% of the adsorbate mass impregnated in 100.0 mg of the same composite was desorbed. For the HT-Fe 500 the best obtained desorption results were also for the NaOH 20% (w/v) and for the solutions resulting from NaOH and NaCl combination, where it was again found that the desorbed mass increased significantly from the first to second desorption cycle. The actuation potential of both adsorbents, calcined and non-calcined, was also tested using natural water samples contaminated with arsenic collected in the Iron Quadrangle region, MG. Results of the analyses in water showed total As concentrations varying between 2.82 and 195.9 μg L-1, demonstrating that in some samples this quantity is greater than the maximum limited recommended by Brazilian administration for monitoring of water destined for human consumption, which is 10.0 μg L-1. The As removal rate was 92.75% with the HT-Fe composite and 95.33% with HT-Fe 500 for the concentration real sample. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior